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Abstract—In this paper, we demonstrate the first application of
the Lucid Dreamer model-based reinforcement learning method
to USV path planning and control. The system combines model-
based predictive control, offline and online learning, along with
sensor fusion to achieve robust performance under varying
environmental conditions prevalent in aquatic environments. To
enable better onboard perception, we trained a U-Net image
segmentation model. We also propose an obstacle avoidance
algorithm which demonstrated success during online simulation
testing. Additionally, we created a training environment in
simulation for parallelized offline reinforcement learning which
mimics our real-world testing environment. Data collection and
real-world experimental tests were conducted in the Marine
Hydrodynamics Lab.

I. INTRODUCTION & MOTIVATION

Autonomous navigation in maritime environments presents
significant challenges for unmanned surface vehicles (USVs).
These challenges include varying weather conditions, unpre-
dictable currents, rough seas, and strong winds. Collecting
realistic training data is difficult, and noisy sensor measure-
ments exacerbate model uncertainty, particularly with dynamic
and stochastic environments. These factors lead to reduced
performance and reliability.

Real-time decision-making is essential for safe and effective
operation, but this is constrained by the limitations of on-
board hardware, including computational resources and power
efficiency. USVs must also navigate complex, unstructured
environments while managing localization and mapping in the
presence of environmental stochasticity. Additionally, optimiz-
ing battery usage is critical to extend mission durations, further
complicating control and planning strategies.

This project aims to overcome these obstacles, enabling the
successful deployment and autonomous navigation of USVs in
novel environments with uncertain wave conditions. By lever-
aging the Lucid Dreamer model-based reinforcement learning
(MBRL) approach [1], we aim to develop an autonomous nav-
igation framework that addresses these challenges effectively.
The contributions of this work are summarized as follows:

1) Trained a U-Net segmentation model for applying the
Lucid Dreamer model, enhancing the USV’s perception
capabilities and enabling improved trajectory planning
and navigation in dynamic environments.

2) Designed and tested an object avoidance algorithm in
Python and C++, demonstrating simulation success and
contributing to optimizing the USV’s control systems for
benchmarking autonomous navigation.

3) Set up an offline Lucid Dreamer training environment
for the USV in IsaacSim to enable more efficient initial
network weights for online training.

II. BACKGROUND & RELATED WORK

A. Model-Based Reinforcement Learning

Model-based reinforcement learning (MBRL) [1] integrates
an explicit environment model to predict future states and
rewards, allowing for more efficient planning than model-free
methods. By simulating outcomes with the learned model,
MBRL reduces the need for extensive real-world interactions,
improving data efficiency and safety. However, maintaining
model accuracy is challenging, and errors can degrade perfor-
mance. Advances in deep learning have made MBRL more
scalable, and hybrid approaches combining model-based and
model-free techniques are increasingly popular. MBRL is
especially valuable in robotics and healthcare, where safety
and efficiency are critical. In this project, the Lucid Dreamer
MBRL method is used to achieve real-time reactive control of
the Heron USV in challenging aquatic environments, leverag-
ing its ability to balance efficiency and adaptability.

B. USV Control and Path Planning

Reinforcement learning for USV control and path planning
is an active area of research. One approach uses a raster map
combined with a Deep Q-Learning network (DQN) to enable
full-coverage path planning for a USV around static obstacles
in simulation [2]. In addition to static obstacles, dynamic
obstacles, and neighboring USVs are sometimes considered
for the obstacle-avoidant trajectories [3].

a) MBRL: Model-based reinforcement learning is a com-
mon technique used for USV path planning with collision
avoidance [3]–[7]. There are a variety of MBRL methods for
ASV control that have been explored in the literature. This in-
cludes approaches that use actor-critic networks [4], Lyapunov
filtered probabilistic model predictive control (LFPMPC) [5],
local update spectrum probabilistic model predictive control
(LUSPMPC) [7], and filtered probabilistic model predictive
control (FPMPC) [6]. There is not an established method that
dominates the literature at this time as each technique has its
own strengths and weaknesses.

For instance, some path planning approaches for USVs
focus on distributed formation control, incorporating collision
avoidance as part of the reward function [8]. This approach
demonstrates stability in formations but has limited testing
in real-world environments. It does not account for realistic



challenges such as sensor noise, communication delays, and
environmental disturbances.

In contrast, data-driven MBRL for USV trajectory tracking
utilizes real-time model predictive control (MPC) adjustments
for trajectory tracking. This method emphasizes data efficiency
and strong path adherence. However, it struggles to fully
capture complex, non-linear dynamics such as hydrodynamic
forces and propulsion interactions, and attempting to incor-
porate these complexities could hinder real-time trajectory
predictions.

Lyapunov-Guided Probabilistic MBRL (LFPMPC) inte-
grates a Lyapunov stability metric to enhance robustness
in USV control [5]. While this method excels in stability,
it suffers from slower initial learning, particularly in high-
dimensional systems or complex environments, making it less
suitable for online training when rapid adaptation is required.

The Lucid Dreamer MBRL method emphasizes online
learning and adaptive control, providing fast adaptation and
low computational costs [1]. It excels in rapidly adapting to
changing environmental conditions, ensuring reliable perfor-
mance in dynamic and unpredictable scenarios. In experimen-
tal tests it also exhibited high reliability in trajectory track-
ing and position-keeping, even under varying environmental
disturbances, showcasing its robustness and adaptability in
challenging scenarios. Lucid Dreamer’s cost-effective compu-
tational performance makes it particularly suitable for deploy-
ment on platforms with limited hardware resources, enhancing
its practicality for real-world applications. We demonstrate its
first application to USV path planning and control in this work.

1) Vehicle Dynamics: There are varied approaches to mod-
eling the dynamics of the USVs to enable effective control.
Classically, a mathematical model of the USV is derived
from its kinematics and dynamics [4]. Gaussian processes are
also commonly used to model USV dynamics without prior
knowledge [5]–[7]. Other approaches, including our proposed
approach, require no prior knowledge of the USV dynamics
and rely on a deep neural network to learn the dynamics of
USV due to the use of model-based learning [3], [8].

III. TECHNICAL APPROACH

This project employs the Lucid Dreamer model-based rein-
forcement learning (MBRL) approach to enable adaptive, real-
time navigation for USVs in dynamic aquatic environments.
The system combines model-based predictive control, offline
and online learning, along with sensor fusion to achieve robust
performance under varying environmental conditions.

Applying Lucid Dreamer introduces several key innovations
to the existing MBRL approaches to autonomous USV nav-
igation and control. First, it integrates online learning with
adaptive control to enable real-time performance, allowing the
system to react swiftly to environmental changes. Secondly,
Lucid Dreamer is optimized for low computational overhead,
making it well-suited for resource-constrained platforms com-
monly used in USVs. Additionally, it is designed to handle
environmental stochasticity and sensor degradation, ensuring
robust operation even under challenging conditions.

One limitation of the Lucid Dreamer method is that real-
time updates can significantly strain computational resources
in highly complex environments with unpredictable, high-
dimensional disturbances. To address this challenge, this
project mitigates the issue by running the computational pro-
cesses offboard instead of relying on Heron’s Nvidia computer,
ensuring smoother operation without compromising perfor-
mance.

In this project, the Lucid Dreamer approach extends prior
MBRL methods by combining model-based predictions with
real-time adaptability to environmental changes, such as sensor
degradation caused by waves. This makes it particularly well-
suited for challenging aquatic environments where accurate
dynamics modeling and rapid decision-making are critical.

A. Image Segmentation

Image segmentation is pivotal in this project, enabling
the Heron USV to identify obstacles and navigate
effectively in complex aquatic environments. Using
the U-Net architecture from the open-source repository
https://github.com/spsingh37/UNet_dreamer
[9], a model was trained on a custom dataset specifically
collected and labeled for Heron’s operating conditions, using
RoboFlow. This process involved several design stages, data
collection, and troubleshooting to ensure robust performance.

B. Offline Training

Fig. 1. Isaacsim Training Environment for the Heron USV

To enable highly parallelized offline reinforcement learning
for a USV, we utilized the RANS framework which integrates
with the Nvidia IsaacSim simulator [10]. The original intention
was to use the simulator Gazebo for the offline policy training,
but the existing libraries which integrated with Gymnasium
were largely unmaintained or otherwise didn’t meet our ver-
sion requirements.

We chose to use RANS for a multitude of reasons. First,
RANS has implemented scripts to simulate the hydrodynamics
of an USV which IsaacSim doesn’t offer a native package for
at this time. Second, RANS had existing support for training



with the Heron USV which prior work has demonstrated can
transfer to real-world field tests [11]. Third, RANS is highly-
parallelized compared to existing libraries for reinforcement
learning with Gazebo. IsaacSim also supports higher quality
visual rendering than Gazebo which is an appealing feature
for future work which could utilize a camera as part of the
observation space.

We created a training environment with a dynamic number
of buoys to resemble the field tests as seen in Figure 1.
Training was run on an Ubuntu 20.04 server with two Nvidia
RTX A6000 GPUs.

IV. EXPERIMENTS AND RESULTS

In this work, we utilized the Heron USV, as seen in Figure
2, to demonstrate the efficacy of Lucid Dreamer for USV path
planning and control. The offline training used to initialize the
network weights for the online training utilized IsaacSim and
the RANS framework. In turn, our online training in simulation
utilized Gazebo and ROS.

Fig. 2. The Heron USV used in this project.

A. USV Hardware Platform

The Heron USV, developed by Clearpath Robotics, is a
versatile, portable unmanned surface vehicle (USV) designed
for research and monitoring in aquatic environments [12].
It features a compact, catamaran-style design with deployed
dimensions of 1300 mm in length, 940 mm in width, and
340 mm in height (51.2 x 37 x 13.4 inches). Its anti-fouling
thrusters and 150 mm (5.9 inches) draft make it well-suited for
many conditions, including shallow and hard-to-reach waters.

The Heron can carry a maximum payload of 10 kg (22
lbs) and is equipped with GPS, an Inertial Measurement
Unit (IMU), and multiple communication options such as
USB, TCP/IP, and RS232. These features make it ideal for
environmental monitoring, data collection, and autonomous
navigation applications. It is powered by a 14.4V 29Ah NiMH
battery pack, allowing up to 2.5 hours of typical operation, or
10 hours in standby mode, with a recharge time of 10 hours.

Weighing 20 kg (44 lbs) without the battery and with a
battery weight of 9 kg (20 lbs), the Heron is lightweight and
portable, with folding pontoons that facilitate easy transport
and deployment. It reaches speeds of 1.7 m/s (5.6 ft/s) and
can precisely maneuver using its bi-directional jet thrusters,
which allow it to turn on the spot [12].

In addition to its flexibility for research and environmental
missions, the Heron supports open-source development, en-
abling researchers to customize it for specific tasks such as
autonomous navigation.

B. Image Segmentation

The effort began with hardware preparation to equip the
Heron USV to capture high-quality data for image segmenta-
tion. Custom mounts for the beacon and Intel RealSense cam-
era were designed and 3D-printed, allowing secure attachment
to the vehicle. These mounts enabled precise positioning for
the RGB-D camera, which streams data through ROS. The
simulation environment was updated to reflect these changes,
accurately representing the Heron’s setup.

Fig. 3. Camera mounted on the Heron

Data collection occurred during field tests at the Marine
Hydrodynamics Laboratory (MHL) on September 27th (pre-
test) and September 30th, where the Heron was tested under
three wave conditions. The captured data included multi-
modal inputs from LiDAR, RGB-D camera, IMU, beacon,
and control signals, providing a comprehensive segmentation
and model training dataset. During this phase, the camera’s
frame was temporarily fixed upright to ensure stability and
data quality, addressing immediate testing requirements.

The training began with initial trials on the MaSTr3125
dataset, which proved unsuitable due to differences in environ-
mental context. Attention then shifted to the custom-labeled
dataset collected from the Heron’s environment. After labeling
120 of the 2,230 images, the process paused to validate the
U-Net architecture by overfitting it on a small subset of
5–10 images. This step revealed a mismatch issue in the
prediction output, which was resolved. Once the architecture



was confirmed to work as intended, a sufficient dataset was
used for training. The final model achieved a training loss of
0.0007973, demonstrating strong segmentation performance.

Fig. 4. U-Net Final Training Results

The U-Net training marked a significant milestone, but
several ongoing efforts are focused on further improving the
system. To enhance temporal resolution for more precise
segmentation, the camera is being configured to capture at
30 FPS. The camera’s URDF configuration is being refined in
the simulation environment to ensure more accurate alignment
with real-world conditions. Additionally, sensor locations and
buoy dimensions are being updated to improve the accuracy of
the simulation and support better integration with navigation
algorithms.

With the U-Net model now operational, its segmentation
outputs are ready to be integrated into the Lucid Dreamer
MBRL framework. This integration is expected to significantly
enhance obstacle detection, trajectory planning, and overall
navigation, further advancing the Heron USV’s capability to
operate autonomously in dynamic and unpredictable aquatic
environments.

V. DISCUSSION

The integration of the Lucid Dreamer MBRL method with
the Heron USV demonstrates promising results in enabling
adaptive, efficient, and robust navigation in challenging aquatic
environments. The method effectively balances computational
efficiency with real-time adaptability, addressing key limita-
tions of prior MBRL approaches.

Despite these successes, several difficulties were encoun-
tered during the project. The Heron USV occasionally ex-
perienced breakdowns, leading to delays in testing and data
collection. Additionally, the vehicle’s dimensions (1.3 m x
0.94 m, 29 kg) presented challenges in transport and handling,
particularly when deploying and recovering the vehicle at
testing sites.

Testing was constrained to the Marine Hydrodynamics Lab-
oratory (MHL), which had a tight schedule during weekdays
(8 AM–4 PM) and was unavailable on weekends. Each wave
test required significant setup time (1–1.5 hours), further
limiting the number of experiments conducted within the
allocated time. These logistical constraints added complexity
to the project timeline and necessitated efficient coordination
to maximize the limited testing opportunities.

Despite these challenges, the project succeeded in demon-
strating the potential of the Lucid Dreamer approach. Future
iterations of this work could benefit from additional testing
resources, extended access to the MHL, or alternative testing
environments to reduce delays and improve overall experimen-
tal efficiency.

A. U-Net Image Segmentation

The U-Net segmentation model was trained on 222 training
images and validated on 13 validation images. The results
show strong convergence, with the training and validation loss
stabilizing after approximately 100 epochs, as depicted in the
loss curve in Figure 4. The final training loss is very low,
suggesting that the model successfully learned the patterns
within the dataset. The validation loss also closely tracks
the training loss, indicating minimal overfitting and good
generalization to unseen validation data.

The learning rate schedule in Figure 4 shows an effective de-
cay strategy, where the learning rate decreases at key intervals,
promoting stable training and refinement of the model. This
schedule prevents large oscillations in loss and ensures smooth
convergence. The final performance demonstrates that the U-
Net architecture is suitable for segmenting objects in the Heron
USV’s environment, such as buoys, despite the relatively small
dataset size.

Fig. 5. Sample of U-Net Test Results

In the testing results seen in Figure 5, the predictions closely
match the ground truth target labels, effectively segmenting
the buoys in both calm and moderately cluttered aquatic envi-
ronments. In the first example, the buoy is clearly identified,
with minimal segmentation errors. In the second example, the
model successfully detects smaller buoys at a greater distance,
which showcases its ability to capture features at varying
scales. However, some minor inaccuracies are observed, par-
ticularly with small or distant objects, where the segmentation
boundaries are slightly less precise. These discrepancies could
be due to the limited training data or the inherent difficulty of
identifying small objects in low-resolution images.



Overall, the results highlight the effectiveness of the U-Net
architecture for the segmentation task but also suggest areas
for improvement. The model could benefit from additional data
to enhance its ability to generalize to diverse conditions, espe-
cially for smaller or partially obscured objects. Furthermore,
the resolution of input images may need to be increased to
improve the segmentation quality of fine details, particularly
for objects at a distance.

To improve the U-Net model’s performance, data aug-
mentation techniques such as random rotations, brightness
adjustments, and cropping could be employed to simulate
diverse environmental conditions and effectively increase the
dataset size. Expanding the dataset with additional images cap-
turing challenging scenarios, such as high wave disturbances,
occlusions, and varied lighting, would enhance the model’s
generalization. Higher-resolution inputs during training and
inference could improve segmentation accuracy for small
and distant objects. Finally, fine-tuning hyperparameters and
exploring alternative loss functions, such as Dice or IoU loss,
could further optimize the model’s ability to detect challenging
objects.

VI. FUTURE WORK

Future efforts will focus on enhancing the system’s ro-
bustness and performance under more challenging condi-
tions. This includes improving the model to handle higher
wave disturbances effectively and configuring the camera
to capture at a frequency of 30 FPS for better data fi-
delity. Additional work will address fixing the camera’s
URDF configuration in the code for future needs and up-
dating the dimensions and measurements of sensor loca-
tions to ensure greater accuracy. Extracting key data streams
such as /scan, /odometry/filtered, /imu/data,
/cmd_vel, /cmd_drive, /tf, and /tf_static will
enable running Hector SLAM for detailed comparison and
performance evaluation. These improvements aim to refine the
system’s reliability, adaptability, and precision, especially in
more extreme aquatic environments.

For the offline training, there will be efforts to make
the testing environment more visually realistic to real-world
conditions. This would help with integrating the camera into
the observation space which may improve performance. We
anticipate that the IsaacSim simulator will continue to improve
its offerings of provided USDs for creating environments along
with accurately simulating the hydrodynamics of the USV.

Future efforts will focus on addressing these improvements
to increase system robustness and adaptability, particularly in
challenging aquatic environments with more extreme condi-
tions. Additionally, further development will explore enhanced
sensor fusion techniques and broader testing scenarios to
validate the system’s scalability and generalizability.

VII. CONCLUSION

This project aimed to develop an adaptive, real-time control
system for autonomous maritime navigation on the Heron

USV. Using Lucid Dreamer, the project addresses key chal-
lenges such as variable environmental conditions, sensor noise,
and model uncertainty. Through innovations in adaptive model
predictive control, real-time online learning, and sensor fu-
sion, the system enables reliable USV navigation under un-
predictable conditions while minimizing computational load.
Real-world testing with wave data supports the system’s
stability, demonstrating effective path-following and obstacle
avoidance in both calm and minor wave disturbances.

VIII. CONTRIBUTIONS

A. Tung’s Contributions

• Developed a URDF model for the Heron USV in ROS2
and Gazebo Garden to create a realistic simulation envi-
ronment for testing navigation algorithms and collecting
more training data.

• Designed and tested an object avoidance algorithm in
Python and C++, demonstrating simulation success and
contributing to optimizing the USV’s control systems for
benchmarking autonomous navigation.

• Prepared the Heron USV for deployment by configuring
battery, electrical, and mechanical systems, maintaining
its functionality for every test. Designed and 3D-printed
custom sensor mounts to integrate and calibrate sensors,
ensuring synchronized data acquisition.

• Conducted real-world navigation tests under varying
wave and obstacle conditions to collect sensor data (Li-
DAR, camera, IMU, GPS, odometry) for multimodal data
fusion.

• Implemented frame alignment and timestamp synchro-
nization to improve Hector SLAM accuracy and perfor-
mance analysis in RViz.

• Labeled and processed a 2,230-image dataset to train a U-
Net segmentation model for applying the Lucid Dreamer
model, enhancing the USV’s perception capabilities and
enabling improved trajectory planning and navigation in
dynamic environments.

• Designed buoy and MHL model for IsaacSim simula-
tions.

B. Katie’s Contributions

• Compiled existing libraries for integrating ROS, Gazebo,
and Gymnasium and their shortcomings given the project
objectives.

• Documented set up processes for experimental testing
with Gazebo and IsaacSim simulations.

• Created USD assets from the CAD of the entities previ-
ously used in Gazebo.

• Created USD environment to run experimental tests with
the Heron USV in IsaacSim.

• Added a task for ASV gap following between dynami-
cally generated buoys to the RANS framework.
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