
Enhancing Vision based SLAM through Shadow
Removal Preprocessing

Hanxi Wan
Robotics

University of Michigan
Ann Arbor, USA

wanhanxi@umich.edu

Kanisius Kusumadjaja
ECE

University of Michigan
Ann Arbor, USA

jehiank@umich.edu

Seung Hun Lee
ECE

University of Michigan
Ann Arbor, USA

armyhuni@umich.edu

Tung Do
ECE

University of Michigan
Ann Arbor, USA

tungsdo@umich.edu

Abstract—In general, vision-based SLAM struggles to detect
dynamic objects, which complicates tracking for Unmanned
Ground Vehicles (UGVs). This issue arises because vision-based
SLAM is susceptible to environmental factors such as shadows
or significant changes in illumination, which can affect object
detection. Particularly, raw data that excludes dynamic objects
but includes shadows does not accurately represent the real
environment. Our objective is to implement a shadow removal
algorithm that addresses both static and dynamic objects at the
front end of the SLAM pipeline to see whether it improves our
SLAM accuracy results.

Index Terms—Ground Vehicle, Vision-based SLAM, Shadow
Removal

I. INTRODUCTION

Vision-based Simultaneous Localization and Mapping
(SLAM) inherently struggles with detecting dynamic objects,
presenting significant challenges in tracking for Unmanned
Ground Vehicles (UGVs). Research indicates that the removal
of dynamic objects and their associated shadows can substan-
tially improve SLAM outcomes [1], [2]. The susceptibility
of vision-based SLAM to environmental influences, such as
shadows or significant illumination changes, often disrupts
object detection. Earlier studies, such as those by Bescos et
al. [1] and Wimbauer et al. [3], have tackled this issue by
segmenting and masking or completely removing dynamic
objects. However, these methods often left residual shadows
in the raw data, compromising the representation of the actual
environment. Our research aims to refine this approach by
developing and implementing a shadow removal algorithm that
effectively processes both static and dynamic objects at the
front end of the SLAM pipeline. This study explores whether
such preprocessing enhances the accuracy of SLAM results,
aligning with our goal to enhance vision-based SLAM through
shadow removal.

II. RELATED WORK

This section reviews pertinent literature in the areas of
vision-based SLAM, focusing on adaptations for dynamic
environments and illumination variations, as well as shadow
removal techniques.

A. Vision-based SLAM

Vision-based SLAM systems create a map of an unknown
environment and simultaneously keep track of their location
within it. These systems predominantly use visual inputs from
cameras, which makes them highly sensitive to changes in the
environment.

1) Dynamic SLAM: Dynamic SLAM focuses on adapting
standard SLAM approaches to handle environments where ob-
jects are in motion, which is a common scenario in urban and
indoor settings. Traditional SLAM systems struggle in such
conditions due to the static nature of the map they generate.
Previous studies have introduced approaches to identify and
exclude dynamic objects from the SLAM process, enhancing
tracking accuracy and map fidelity [4].

2) Twilight SLAM: Twilight SLAM deals with the chal-
lenges posed by low-light conditions or significant changes in
illumination, which are critical issues in vision-based systems.
Researchers have explored various enhancement techniques
such as integrating depth sensors or employing advanced ma-
chine learning algorithms to improve feature detection under
varying lighting conditions. Previous work has demonstrated
improvements in SLAM performance by adapting the feature
extraction and matching processes to be more robust to these
changes [5].

B. Shadow Removal

The presence of shadows can significantly impact the perfor-
mance of vision-based SLAM systems, as shadows can alter
the appearance of objects and surfaces, leading to incorrect
assumptions about the environment. Recent advancements in
shadow removal have been aimed at enhancing image quality
for better object recognition and localization. Techniques range
from simple color space transformations to complex neural
networks that learn to differentiate between shadows and
objects. Such techniques are pivotal for ensuring that SLAM
systems are not misled by the transient changes in visual
appearance caused by moving shadows.

Each of these areas contributes to the broader goal of
improving the robustness and accuracy of vision-based SLAM
systems in dynamic and poorly lit environments. Our work
builds upon these studies by integrating a shadow removal



algorithm directly into the SLAM pipeline, aiming to refine
both the mapping and tracking components of the system.

III. PROPOSED METHODOLOGY

Our proposed methodology consists of two processes: pre-
processing for shadow removal and ORB-SLAM2 for visual
SLAM representation. The figure below shows the overall
pipeline we have considered (see Fig. 1).

Fig. 1: Overview of our proposed methodology.

A. Shadow Removal

Lots of shadow removal algorithms are available, such as
SpA-Former-shadow-removal [6], SID [7], and TBRNet [8].
We have implemented and tested several shadow removal
algorithms from current research and have integrated it with
the ORB-SLAM2 framework.

1) Not Learning Method:

Algorithm 1 Shadow Detection Algorithm in LAB color space

Convert the RGB image to a LAB image
Compute the mean values of the pixels in L, A, and B
planes:
µL ← mean(L)
µA ← mean(A)
µB ← mean(B)

if µA + µB ≤ 256 then
Classify pixels with L ≤ (µL−σL/3) as shadow pixels.

else
Classify pixels with lower values in both L and B planes

as shadow pixels.
end if

Fig. 2: Shadow Area detected using Algorithm 1. (a) original
image; (b) the detected shadow region in white

• LAB Color Space. This method of detecting and re-
moving shadows is based on the paper by Murali and
Govindan [9] utilizing the LAB color space which rep-
resents color in terms of lightness (L) and the A and
B channel which represent Green to Red ratio (A) and
the Yellow and Blue ratio (B). The approach to detect
shadows utilizes the L and B channels. The L channel
provides lightness information and the B channel are
generally smaller in most outdoor images. Combining
the values from L and B, we can generate a threshold
to determine whether pixels are a shadow or not. The
general algorithm is shown in Algorithm 1. To remove
the shadow we multiply the RGB channels of the shadow
pixels by a constant as determined by the ratio of the
average of the surrounding non-shadow area to that in
the shadow area.

• YCbCr Color Space. This method introduces a straight-
forward framework utilizing the YCbCr color space,
specifically the luminance, chroma: blue, and chroma: red
components, to detect and remove shadows from images
[10]. Initially, it employs statistical analysis of intensity
within the YCbCr color space to identify shadows. Once
detected, a shadow density model segments the image
into regions of uniform density. The removal process
then involves relighting each pixel within the YCbCr
color space and subsequently adjusting the colors in the
shadowed areas within the RGB color space to ensure
seamless transitions. A key advantage of this approach
is the preservation of detail and the avoidance of harsh
transitions between shadowed and non-shadowed areas.

2) Learning Method:

• SpA. The SpA-Former method [6] innovatively integrates
shadow detection and removal into a single efficient
Transformer-based stage, thereby streamlining the pro-
cess and enhancing computational efficiency. It utilizes a
Gated Feed-Forward Network (GFFN) within the Trans-
former encoder to capture global dependencies effec-
tively. This is complemented by a CNN decoder that in-
corporates elements of Generative Adversarial Networks
(GANs), including Two-Wheel RNN joint spatial atten-
tion (TWRNN) and Fourier transform residual blocks
(FTR). These elements are critical for accurately iden-
tifying and removing shadows, ensuring detailed recon-
struction of shadow-free images. Notably, SpA-Former
is designed to be lightweight, with a total size of only
0.47MB and requiring 15G FLOPS, making it suitable
for real-time applications. This method not only reduces
the complexity of traditional shadow removal processes
but also maintains high performance on standard datasets
like ISTD and SRD, making it an excellent enhancement
for SLAM systems that require high-quality, shadow-free
visual input for accurate mapping and localization.

• TBRNet. TBRNet (Three-branch residual network) [8]
is composed of three branches dedicated to three distinct
tasks (shadow image reconstruction, shadow matte esti-



mation, and shadow removal). The shadow image recon-
struction branch maximally preserves detailed informa-
tion of an input image (i.e., shadow image). The shadow
matte estimation branch identifies shadow positions and
computes pixel-level illumination adjustments. Lastly, the
shadow removal branch restores the light of shadow areas
according to the light of nonshadow areas, and finally,
outputs a shadow-free image without artifacts.

B. ORB-SLAM2

ORB-SLAM2 is an advanced SLAM system designed for
monocular, stereo, and RGB-D cameras. It is capable of real-
time operation on standard CPUs across varied environments
and is equipped with features like map reuse, loop closing, and
relocalization. It excels in accuracy due to its backend based
on bundle adjustment and includes a lightweight localization
mode for zero-drift localization in known maps. The system
is open-source, making it a valuable tool for research and
practical applications alike [11].

IV. DATASETS

1) KITTI (Karlsruhe Institute of Technology and Toyota
Technological Institute): is a popular dataset in the field of
SLAM and autonomous navigation consiting of hours worth of
recorded city and highway traffic scenarios in several camera
set ups such as RGB, grayscale stereo, and 3D laser scanning.
The KITTI dataset provides the entire sequence of images
from a vehicle navigating through different city and highway
streets which allow us to apply our shadow removal algorithms
to each image. In our study of applying shadow removal
algorithms we utilized sequence 00 in both RGB and grayscale
stereo. While our primary emphasis is on removing shadows in
the scenes and seeing the results in ORB-SLAM2, the image
sequences also provide insight into the effectiveness of shadow
removal methods in various environmental lighting scenarios.

2) FinnForest: The FinnForest dataset [12] is a novel and
challenging dataset of SLAM testing material in a forest
landscape, particularly for mobile robotics working in semi-
natural environments. In contrast to common urban structures,
such as the dataset provided by KITTI, the FinnForest dataset
provides an unregulated natural environment to exemplify
sub-urban and forest environment. In the forest environment,
shadows can be more present than in scenarios such as
highway driving and the shadows are much less structured
and defined such as those found in urban environments. The
dataset is collected from a vehicle equipped with a sensor rig
that constitutes four RGB cameras, an Inertial Measurement
Unit, and a Global Navigation Satellite System receiver. The
sensors are synchronized based on non-drifting timestamps.
The dataset provides trajectories of varying complexity both
for the state of the art visual odometry approaches and visual
simultaneous localization and mapping algorithms. We select
the summer sequence S01 8Hz summer seq1 shortLoop for
our testing as it provides the opportunity for loop closure and
has daylight which allows us to apply our shadow-removal
algorithms.

V. RESULTS

Our results were driven by different shadow removal al-
gorithms. We compared the results from two non-learning
methods on the KITTI dataset and also evaluated the results
from two learning methods on the same dataset. Then, we
chose the best algorithm from each method and applied it to
the Finforest dataset, where we observed more shadows.

A. Non-Learning Method on KITTI Dataset

1) LAB Shadow Removal on KITTI Dataset: Figure 9a
compares the shadow detection and removal using the LAB
method on the KITTI 00 sequence. We see on the right hand
side that the LAB algorithm is able to highlight parts of
the scene that was previously occluded by a shadow which
should presumably increase the performance of Visual SLAM
algorithms. However, for the large shadow in the center of
the scene, other than highlighting the shadow and showing
the road more clearly, there is still a persistent outline of
the shadow on the road, this is known as the ghosting effect
and has been an issue for many shadow removal algorithms.
Today’s shadow removal algorithms are better able to remove
the ghosting effect through the use of deep learning methods.

(a) Before Removal

(b) After Removal

Fig. 3: LAB Result.

2) YCbCr Shadow Removal on KITTI Dataset: Figure 4
shows a comparison between the original and shadow-removed
KITTI data using the YCbCr algorithm. This method can
also detect shadows; however, it mistakenly recognizes some
objects as shadows. Since YCbCr separates the image into
luminance (Y) and chrominance (Cb and Cr) component which
exploits the human visual system’s lesser sensitivity to fine
color details, it allows for efficient compression compared to
other color space method. Consequently, some parts of objects
are incorrectly identified as shadows, which is far from our
expectations. Therefore, in the non-learning methodology, the
LAB color space shows better results compared to the YCbCr
algorithm for shadow removal.



(a) Before Removal

(b) After Removal

Fig. 4: YCbCr Result.

B. Learning Method on KITTI Dataset

1) SpA on KITTI Dataset: Figure 5 presents a side-by-side
evaluation of the SpA method’s shadow detection and removal
capabilities on the KITTI dataset, with ellipses marking the
shadow regions in the top image. The SpA method not
only adeptly identifies but also effectively eradicates shadows,
yielding a scene where areas once under shadow now exhibit
enhanced brightness and uniformity akin to their surround-
ings. This meticulous preservation of details, apparent in the
undisturbed textures of the road and building facade, is crucial
for SLAM applications where feature extraction demands high
accuracy. Moreover, the SpA approach manages to maintain
color fidelity, avoiding the unnatural color shifts that often
accompany shadow removal. There are no discernible edge
artifacts post-removal, indicating a smooth transition between
shadowed and lit regions. Given the real-world conditions
mirrored by the KITTI dataset, the success of the SpA method
points to its potential applicability in autonomous driving
systems that necessitate precise environmental interpretation.
The SpA method emerges as a potent preprocessing tool
for vision-based SLAM, promising to significantly refine the
system’s mapping and navigational precision by providing
clean, consistent visual data.

2) TBRNet on KITTI Dataset: Figure 6 presents a com-
parison between the original frame and its corresponding
shadow-removed counterpart, both extracted from the KITTI
dataset. The efficacy of this method lies in its adeptness at
discerning and rectifying substantial shadow coverage, owing
to its innovative approach featuring three distinct branches
dedicated to various aspects of shadow removal. By strategi-
cally addressing different facets of this challenge, the method
achieves commendable results in reclaiming obscured regions.
Consequently, the rejuvenated areas not only enhance visual
clarity but also furnish a richer array of feature points for
algorithms like ORB-SLAM to leverage, thereby amplifying
overall performance. Nevertheless, the efficacy of TBRNet
diminishes when confronted with diminutive or irregular

(a) Before Removal

(b) After Removal

Fig. 5: SpA Result.

shadows, posing a notable challenge for complete removal
and recovery in such scenarios. Further refinement may be
necessary to address these nuanced instances comprehensively.

(a) Before Removal

(b) After Removal

Fig. 6: TBRNet Result.

C. ORB-SLAM2 on KITTI Dataset

In this section, ORB-SLAM2 is run on preprocessed data
and the results are evaluated in terms of APE (absolute pose
error), as shown in Table I. The APE value along timesteps
and the box plot are shown in Figure 7 and 8.

Generally, learning methods tend to perform better than
non-learning methods due to their superior ability to remove
shadows and reduce noise, which leads to more robust feature
extraction. By precisely removing shadows, it allows for
more accurate feature detection and consistent feature match-
ing, which is critical for the SLAM algorithm. The method
also promotes steadier tracking by eliminating impermanent
shadow features and enhances the quality of the SLAM-
generated map by supplying shadow-free images. Furthermore,



rmse mean median

Color original 3.488324 3.180059 3.246839
Color SpA 3.563915 3.264284 3.328308
Color TRB 3.350159 3.06422 3.137969

Gray original 1.34489 1.226514 1.144547
Gray SpA 1.303871 1.174259 1.131656
Gray TRB 1.37854 1.237017 1.223835

Gray YcbCr 1.576639 1.388436 1.201032
Garay LAB 1.538319 1.397639 1.222206

TABLE I: KITTI ORB-SLAM2 APE Results.

Fig. 7: ORB-SLAM2 APE Result.

Fig. 8: ORB-SLAM2 APE Boxplot.

its learning-based design grants it the flexibility to handle
various lighting conditions more adeptly compared to non-
learning methods, which may not perform as uniformly across
diverse environments.

Grayscale images hold an advantage over colored ones due
to their inherent stability across diverse lighting conditions
and robustness to illumination fluctuations. This stability en-
sures that features extracted from grayscale imagery maintain
consistency and reliability. In the domain of colored imagery,
the efficacy of TRBNet shines through. By adeptly recovering
dark areas, TRBNet enriches the visual data with additional
information, particularly beneficial for feature extraction pro-
cesses. This augmentation of the image data enhances the
discriminative power of the features extracted from colored

images. Within the realm of grayscale imagery, SpA stands
out as a superior method. By effectively eliminating shadows
and accurately representing features on the road, SpA enhances
the perceptual clarity of the scene. This precision in shadow
removal not only improves visual fidelity but also aids in the
extraction of salient features critical for SLAM algorithms.

D. Shadow Removal on Finforest Dataset

Now we investigate how our Shadow Removal algorithms
perform on the FinnForest dataset.

1) LAB Shadow removal on FinnForest Dataset: We see
that the LAB Shadow removal algorithm on the FinnForest
dataset 9 is also effective to lighten up shadows and to
remove much of the occlusion caused by the original shadow,
particularly in the bottom left and middle right side of the
image. However, it is not without flaws, as we see that the thin
shadows in the center are not removed, this is likely because
the shadows are not dark enough and therefore not past the
threshold to be classified as a shadow in the LAB shadow
detection algorithm.

(a) Before Removal

(b) After Removal

Fig. 9: LAB Result on FinnForest

2) SpA Shadow removal on FinnForest Dataset: Figures
10 and 11 reveal challenges encountered by the SpA method
when applied to the FinnForest dataset, an environment that
proves more demanding than the urban landscapes of the
KITTI dataset. In the top image of 10, while shadows are
recognized, they are not entirely removed, potentially due to
the intricate textures and diverse lighting within forest settings
that confuse the algorithm’s ability to differentiate between
actual shadows and naturally dark areas. Moreover, the top
image of Figure 11 points out erroneous shadow detection,
likely caused by the intricate patterns of light filtering through
the trees and the complex terrain. The forest’s nuanced texture
and lighting, markedly distinct from urban environs, contribute
to the SpA method’s decreased efficacy, necessitating further



model training on datasets akin to FinnForest. Additionally, the
method’s adaptation to new domains may benefit from domain
adaptation techniques and multimodal data integration, like
combining visual data with depth sensing, to refine shadow
detection and removal for such multifaceted natural scenes.

(a) Before Removal

(b) After Removal

Fig. 10: Spa on FinnForest Result.

(a) Before Removal

(b) After Removal

Fig. 11: SpA on FinnForest Result.

VI. DISCUSSION

A. Contributions

The goal of this project is to propose a novel method-
ology for minimizing one of the major environmental fac-
tors—shadow removal—to enhance visual-based SLAM. We
attempted to find a more adequate algorithm for removing
shadows by comparing non-learning and learning methods.
We found that while the non-learning method can be efficient
and applied in real-time SLAM, its results are not as good
as those of the learning method. Consequently, the learning
method has shown better performance not only in detecting
shadows but also in removing them from objects. We evaluate
a novel pipeline that we proposed in this project and show that
our preprocessing improves Visual-based SLAM.

B. Limitations and Future Works

We have addressed several challenges associated with
deterministic shadow removal using both mathematical
algorithms and learning methods. However, there is still room

for improvement.

First, removing shadows deterministically through math-
ematical algorithms presents substantial difficulties. One of
the major issues encountered is ghosting, where remnants of
shadows persist in the output image, reducing both clarity
and quality. Furthermore, attempts to mitigate shadows can
inadvertently introduce noise into the image. Particularly in
the LAB color space, efforts to lighten shadows can lead to
over-illumination, which distorts the true colors and brightness
of the scene. Another significant challenge is the difficulty
in distinguishing between shaded objects and actual shadows.
This differentiation is crucial for accurate shadow removal
but remains a complex problem due to subtle variations
in light and color that need to be interpreted. Given these
challenges, the future of shadow removal likely lies with ma-
chine learning methods. These approaches still face particular
issues in the context of real-time applications, which struggle
with complexity and running time. However, as shown in
our results, machine learning can potentially provide more
adaptive, efficient, and accurate solutions for shadow removal.
One innovative approach could involve pre-masking shadows
subsequent to object detection. By matching the detected
object with its shadow, it might be possible to more precisely
identify and remove the shadow, thereby enhancing the overall
image quality. This method integrates object recognition with
shadow detection, leveraging the strengths of machine learning
to address the inherent complexities of shadow removal in
dynamic environments. While current deterministic methods
face significant hurdles, the integration of machine learning
techniques presents a viable pathway toward more effective
shadow removal solutions, promising substantial improve-
ments in visual-based SLAM.

VII. CONCLUSION

In our exploration of enhancing vision-based SLAM with
shadow removal preprocessing, we have demonstrated the
potential to improve the robustness and accuracy of SLAM
systems in varied environments. Our methodology integrates
advanced shadow detection and removal algorithms—both
learning-based and non-learning—into the front end of the
SLAM pipeline. The successful application of the SpA method
on the KITTI dataset, and the investigation of its limitations
in the FinnForest dataset, paves the way for future research.
Despite challenges such as distinguishing subtle shadow nu-
ances and real-time processing demands, the advancements
in learning-based shadow removal techniques are promising.
Future work will focus on refining these methods and tailoring
them to the unique challenges presented by different environ-
ments. This research has the potential to significantly reduce
the impact of environmental factors on SLAM systems, a stride
forward for autonomous navigation technologies.

VIII. RESOURCES

GitHub: https://github.com/dyingplant/mobrob11

https://github.com/dyingplant/mobrob11


Presentation: https://www.youtube.com/watch?v=
r6X7FIWKkBw
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