
Enhancing Monocular 3D Object Detection in
Foggy Conditions: An Adapted MonoCon Approach

for Autonomous Vehicles
Tung Do

Department of ECE
University of Michigan, Ann Arbor

Ann Arbor, USA
tungsdo@umich.edu

Xirong Liu
Department of Mechanical Engineering

University of Michigan, Ann Arbor
Ann Arbor, USA

xirongl@umich.edu

Rahul Swayampakula
Department of Robotics

University of Michigan, Ann Arbor
Ann Arbor, USA

rahulswa@umich.edu

Abstract—This paper explores advancements in monocular 3D
object detection, a pivotal aspect of autonomous vehicle technol-
ogy. We focus on enhancing detection accuracy and robustness in
diverse weather conditions, specifically addressing the challenges
in foggy scenarios. Implementing the MonoCon model [13],
our methodology includes transfer learning, image augmentation
techniques, and pre-processing strategies to improve visibility in
foggy images. Challenges such as fluctuating Average Precision
(AP) values and inefficient detection of distant or small vehicles
in fog are addressed through a revised evaluation strategy and
targeted image processing. Results showed an increase in AP from
7.05% to 17.67% for the normal dataset after training to more
epochs and up to 25.82% for foggy conditions after training to
300 more epochs and applying CLAHE and blur. These findings
underscore the model’s adaptability and effectiveness in diverse
environments.

Index Terms—Monocular 3D Object Detection, Autonomous
Vehicles, Deep Neural Networks (DNN), Deep Learning in Com-
puter Vision

I. INTRODUCTION

Object detection is a crucial computer vision component,
focusing on identifying and categorizing objects in images
through 2D bounding boxes. The advancement of deep learn-
ing has significantly enhanced 2D object recognition, drawing
extensive academic interest. Innovative models like Faster R-
CNN [1], RetinaNet [2], and FCOS [3] have been instrumental
in propelling the domain forward, contributing profoundly to
varied applications, notably in autonomous vehicle technology.

While 2D information contributes significantly to object
detection, it falls short in enabling intelligent systems to
grasp the complexities of the three-dimensional world fully.
This limitation is particularly evident in autonomous vehicles
requiring precise 3D spatial understanding for safe navigation.
Consequently, 3D object detection has garnered increasing
importance, especially in robotics. Despite the state-of-the-
art methods predominantly relying on detailed 3D data from
LiDAR point clouds [4-6], the high cost of LiDAR systems
poses a challenge. Thus, monocular 3D object detection,
offering a more economical and straightforward deployment
option, has emerged as a critical area of research.

Recent innovations in this domain focus on diverse ap-
proaches. For instance, MonoRUn emphasizes reconstruction
and uncertainty propagation, enhancing localization accuracy
in 3D space [7]. FCOS3D introduces an anchor-free method
for object detection [8], while MonoEdge leverages local
perspectives for detection [9]. MonoXiver, with its bound-
ing box denoising technique [10], marks a significant ad-
vancement in detection accuracy. Moreover, methods like
MonoNeRD utilize NeRF-like representations for continu-
ous 3D geometry prediction [11], and innovative approaches
in occupancy learning further enhance detection capabilities
[12]. Inspired by these advancements and the foundational
MonoCon model[13], this paper aims to refine monocular 3D
object detection. We focus on leveraging monocular contexts
as auxiliary learning tasks, drawing from the Cramer-Wold
theorem to introduce effective representations in monocu-
lar 3D object detection. Our methodology involves a Deep
Neural Network (DNN) based feature backbone, multiple
regression head branches for essential parameter learning,
and auxiliary context branches for performance enhancement.
This approach, tested in the KITTI benchmark, demonstrates
competitive accuracy and speed, confirming the feasibility and
effectiveness of monocular 3D object detection in practical
applications.

Our evaluation of the MonoCon model[13] was conducted
using a large-scale dataset that included both clear and adverse
weather conditions, focusing on normal and foggy weather
scenarios to enhance autonomous vehicle safety. We achieved
an Average Precision (AP) score of 25.82% in this bench-
mark’s camera tracking category. This approach not only
achieved a notable increase in AP under regular weather but
also demonstrated significant enhancements in foggy condi-
tions, validating the effectiveness of our adapted MonoCon
model[13] in diverse environmental scenarios. The results
highlight the model’s adaptability and robustness in varying
weather, underscoring its potential in real-world applications.



II. METHODOLOGY

The core challenge of this project centers on 3D object
detection using a Monocular RGB image. The objective is
to accurately predict the objects’ type, position, size, and
orientation within these images. This task is inherently com-
plex due to the lack of depth information typically available
in stereo vision or LiDAR-based systems. We approach us-
ing MonoCon-based architecture, which effectively infers 3D
spatial relationships from 2D data, relying heavily on the
contextual and visual cues present in the RGB images to tackle
this objective.

A. Summary of the MonoCon
The MonoCon [13] framework employs an elegantly

streamlined design comprising three fundamental components:

1) Feature Backbone: Like many 3D object detection net-
works, MonoCon [13] also has a deep learning-based
feature backbone in the architecture. Given an input
RGB image of dimensions 3 × H × W, a feature
backbone f(; Θ) is used to compute the output fea-
ture map F of dimensions D×h×w. We use the DLA
network(DLA-34) in our implementation, as mentioned
in the MonoCon paper.

2) 3D Bounding Box Regression Heads: These bounding
box regression heads are responsible for estimating the
3D bounding box location of the object. The model
regresses on several detection heads, which primarily
perform the tasks of 2D bounding box center Heatmap,
offset vector, depth uncertainty, shape dimensions, and
observation angle. This module is useful for both train-
ing and inference.

3) Auxiliary Context Regression Heads: The approach
leverages four distinct types of projection information
from 3D bounding boxes as auxiliary learning tasks.
These encompass heatmaps depicting the projected key
points, offset vectors corresponding to the 8 projected
corner points, dimensions of the bounding box, and
quantization residuals of keypoint locations. These sup-
plementary components are exclusively employed during
the training phase, exerting a positive influence on the
network’s capacity to refine its estimations for improved
bounding box detections.

B. Summary of Our Approaches
The project employs a model architecture and loss function

similar to the Monocon paper[13] . Further, we enhanced the
training strategy and advanced image augmentation techniques
and explored various modifications to the architecture to
improve the performance of 3D object detection on the given
test dataset.

III. EXPERIMENTS

In this section, we will describe the datasets utilized, the
metrics employed, and the enhancements made to both the
model and data to optimize the performance of 3D object
detection.

A. Datasets and Metrics

1) Datasets: We were supplied with a custom synthetic
dataset capturing urban traffic scenes in standard KITTI dataset
format [14]. This comprehensive database encompasses 1989
images of resolution 1242x375, including test and train im-
ages. The training subset consists of 1229 images earmarked
for training and validation purposes. Ground positions and
semantic labels are provided within this training set, serving
as essential components for training and evaluating model
performance during the validation phase.

The testing set comprises the remaining 760 images, serving
as the benchmark for evaluating the trained model using
Autograder. Unlike the training set, the testing set lacks
ground truth semantic labels but includes images and poses
for evaluation. Notably, the training set is further categorized
into two distinct components: Normal and Bonus. The Normal
set features synthetic images within clear scenarios, while the
Bonus set introduces traffic scenarios in foggy environments,
presenting a more challenging landscape for object detection.

2) Metrics: The primary metric for assessing our model’s
performance is the average precision (AP) on detections,
aligning with the official KITTI 3D object detection evaluation
protocol. Specifically, per the instructor’s detail, we utilize
the metric AP3D|R40 @ IoU = 0.5 (moderate difficulty) for
performance evaluation.

B. Experiments

Further in this section, we shall discuss the series of
experiments conducted to enhance the performance of our
model in 3D object detection on our dataset.

Initially, our model underwent training with randomly ini-
tialized weights on the custom dataset, employing a batch
size of 8 for 200 epochs. During the evaluation of the
training dataset, we achieved a notable Average Precision (AP)
value of 17.67 when assessed on the normal testing dataset.
However, when subjected to the Bonus testing dataset, our
model demonstrated a lower AP of approximately 5.

Upon analyzing the model’s performance on the testing
dataset, a noteworthy observation surfaced—our model ex-
hibited challenges in detecting a significant portion of cars
within foggy scenes, even with 2D detection. This under-
scores a critical limitation in our current detection capabilities,
prompting the need for more effective training strategies to
improve detections within such scenes. Recognizing the need
for enhanced accuracy in detections, the conventional training
approach for more significant epochs was considered. How-
ever, this approach carries the risk of overfitting, particularly
given the distinctive nature of the bonus test dataset, which
diverges significantly from the training dataset.

We adopted a strategic set of approaches to strike a balance
between achieving better detection accuracy and preserving
model generalization. Recognizing the divergence between the
bonus test dataset and the training dataset, we implemented the
following measures:

1) Transfer Learning: We adopted an iterative training
approach, capitalizing on the strengths of the existing



Fig. 1. MonoCon Architecture [13].

MonoCon model [13]. Our strategy involved continuing
the training process using the best-performing weight
file (.pth) as a starting point. This file was selected based
on its superior performance metrics in previous epochs.
By resuming training from this advanced state, we aimed
to refine further and elevate the model’s accuracy.
Leveraging pre-trained models as a starting point for our
training process, capitalizing on the knowledge gained
from a broader dataset. This aids in initializing our
model with features useful for 3D object detection,
reducing the risk of overfitting.

2) Image Augmentation Techniques: We implemented a
series of image augmentation techniques to bolster the
model’s robustness and ability to generalize across di-
verse scenarios. These included:

• Cropping: Adjusting the frame of the input images
to present varied perspectives to the model.

• Contrast Enhancement: As the training dataset is
much darker with less visibility of objects, we am-
plified the contrast levels in the images to accentuate
features, aiding the model to learn better feature
detection and classification.

• Blurring: Introducing blur effects to simulate real-
world scenarios where images may not always be
perfectly sharp, especially the foggy datasets with
less clear vision of vehicles in front of them, thus
preparing the model for a broader range of input
conditions.

• Rotation: Random flips in vertical and horizontal
directions are increased to increase the robustness.

These augmentations were carefully integrated into the
preprocessing pipeline, ensuring a balance between re-
alism and variance in the training dataset. This strategy
enhanced the model’s performance, particularly in chal-
lenging and diverse real-world scenarios, where lighting
and clarity vary significantly.

3) Improving foggy images: We introduced the pre-

processing step to the testing images to improve the
detection quality. The visibility in the foggy images is
too low for the object, which is relatively far away in the
scene. We apply pre-processing to the image to enhance
its quality before processing it through a neural network.
We apply CLAHE to the input image to improve the
contrast of the images, which helps in better detection.

4) Variation of backbone: We further enhanced our ap-
proach by substituting the backbone feature extractor in
the architecture with alternative variants of the DLA.
Remarkably, this modification did not significantly im-
pact the detection quality compared to previous meth-
ods. Consequently, we decided to maintain the existing
architecture for our continued efforts.
In summary, we introduced several image enhancement
modules for training and testing datasets and improved
network initialization through pre-trained weights. This
strategic augmentation optimized the network’s perfor-
mance on the test dataset and enhanced its overall
generalizability.

IV. RESULTS AND EVALUATION

In this section, we delve into the outcomes of our ex-
periments and elucidate the strides we’ve made in enhanc-
ing our network’s performance across diverse datasets. Our
approach involves a comprehensive comparison between our
final evaluation and the training of the original Monocon[13].
Leveraging pre-trained weights and systematically assessing
performance gains through augmentations form the crux of
our methodology.

Consistency has been a cornerstone of our training regimen.
We maintained a steadfast learning rate of 0.000225 through-
out our experiments and a learning rate decay set at 1e-5. The
incorporation of the DLA backbone in the majority of our
trials proved instrumental in achieving optimal performance.
Furthermore, we adhered to all other parameters in alignment
with the official implementation of the Monocon [13] network.



TABLE I
RESULTS ON NORMAL TEST DATASET

Model mAP (%)
epochs100 7.05
epochs200 10.23

epochs130(best) 17.67
pre-train 21.51

TABLE II
RESULTS ON FOGGY DATASET

epochs Augmentation / Processsing mAp(%)
130 None 7.89

Pretrain None 10.1
Pretrain Clahe 11.9

Pretrain + 300 Clahe 16.2
Pretrain + 300 Blur and Clahe 25.82

A. Quantitative Analysis

Our benchmark for evaluation centers around the average
mAP value, gauging the efficacy of object detections across
our dataset. Initially, we subjected our model to a rigorous as-
sessment on a Normal test dataset, undertaking approximately
100 epochs of training. This initial phase yielded an accuracy
of around 7 AP on the normal dataset. After this, an extended
training period of around 200 epochs was conducted, and the
model selected for analysis exhibited the maximum AP instead
of the final epoch model. Additionally, we tested the model
on a Normal test dataset, utilizing a pre-trained model. The
comparative results are detailed in Table I.

Remarkably, the pre-trained model showcased superior per-
formance compared to its counterpart trained on synthetic
datasets. This discrepancy is attributed to fewer training iter-
ations and the pre-trained model’s exposure to a more diverse
and realistic range of sequences that are inherently challenging
to predict. This infusion of robustness and generalization
equips the network to excel in this scenario, underscoring the
value of leveraging pre-trained models for improved perfor-
mance.

Our primary focus is modifying our approach to enhance
detection capabilities in foggy scenarios. We systematically
assess the model’s performance under various augmentation
and training scenarios, and the outcomes are presented in
Table II. Despite conducting tests with multiple settings, the
table exclusively highlights salient configurations that led to a
notable improvement in accuracy over the foggy dataset using
our model.

This observation distinctly underscores the noticeable im-
provement in detection quality within foggy scenarios at-
tributed to our augmentation techniques. Notably, the pre-train
weights demonstrated commendable performance on normal
test cases. Subsequent training from the pre-train stage ensures
the model converges in the right direction. Augmentation and
image enhancements then play a pivotal role in augmenting
robustness and elevating the overall quality of detections.

B. Qualitative results
Additionally, we conducted a qualitative evaluation of our

results to debug the model and facilitate valuable experi-
ments. Our model demonstrated exceptional performance in
the normal dataset, accurately detecting most cars and their
3D bounding boxes.

Fig. 2. (Top to bottom) Testing result on Normal dataset using 200 epochs
and pretrain models

In foggy scenarios, the detection of objects positioned
farther from the ego vehicle posed a considerable challenge.
However, employing the earlier methods improved the model’s
capability to detect vehicles in fog at a reasonable accuracy,
even under challenging visibility conditions. The results are
shown in Figures 3 and 4.

Notably, as the vehicle traverses through the scene, the
dynamic changes in visibility introduce variability in the
results. To address this, we propose a few ideas, which will
be elaborated upon in a subsequent section.

V. CHALLENGES AND SOLUTIONS

Implementing our project presented unique challenges, par-
ticularly when adapting the MonoCon model [13] from the
provided repository. Initially, testing the ’best.pth’ file yielded
improvements, but not to the desired extent. To overcome
this, we extended training to 800 epochs. The principal chal-
lenge lies in training the model on a multi-bin architecture
like Monocon, which optimizes multiple objective functions
simultaneously. Our specific focus is on maximizing the mean
average precision (AP) values for detection. This proves to
be particularly challenging due to the inherent oscillations
during training induced by the complexities of multi-objective
optimization. To mitigate this, we revised our evaluation
strategy from assessing every 10 to every 5 epochs. This
adjustment allowed us to monitor the model’s performance
more frequently, enabling us to pinpoint and select the iteration
exhibiting the highest AP more effectively.



Fig. 3. (Top to bottom) Testing result on foggy dataset using 200 epochs and
pretrain models

Fig. 4. (Top to bottom) Testing result on foggy dataset using augmentations,
pretrain+clahe, pretrain+300+clahe, pretrain+300+blur+clahe

Additionally, we observed a peculiar inconsistency in the
model’s performance: when presented with two foggy images,
the model could detect a specific vehicle in one picture but
failed to detect the same vehicle in the other image, as
illustrated in the picture below. This inconsistency in the
detection error was highlighted and identified as a limitation

Fig. 5. Oscillations in the AP values

Fig. 6. Detection result for 619.png

in the model’s ability to consistently recognize under varying
environmental conditions like fog. The model likely lacked
exposure to a broad range of scenarios, particularly those
involving fog and distant or small vehicles, hindering its ability
to generalize.

Fig. 7. Comparison of detection result under different foggy situations

Although effective in some situations, our current image
processing techniques may not be suitable for all conditions,
particularly those not well-represented in the training data.
This highlights the importance of using more varied and
comprehensive datasets for training to enhance the model’s
reliability across diverse conditions. We plan to implement
these enhancements by incorporating more varied training data
in the future to test and improve the model’s performance
across a broader range of conditions.

Furthermore, our strategic initiative involves substitut-



ing conventional enhancement methods with advanced deep
learning-based approaches, such as GDIP (refer to the pro-
vided citation). GDIP leverages deep learning to enhance
images captured in foggy scenes through the application
of various image processing techniques. By adopting these
innovative methods, we aim to fortify detections, rendering
them more resilient across diverse environmental conditions.

These tailored approaches enabled us to tackle the specific
requirements of monocular 3D object detection under diverse
weather conditions, emphasizing the need for adaptability and
robustness in model training and implementation.

VI. CONCLUSIONS

This study made significant strides in monocular 3D ob-
ject detection, particularly in challenging foggy conditions,
enhancing the capabilities of autonomous vehicles. By imple-
menting, adapting, and improving the MonoCon model, we
achieved notable improvements in detection accuracy. Transfer
learning and sophisticated image augmentation techniques like
contrast enhancement and blurring resulted in a considerable
increase in Average Precision (AP). Our results, showing an
increase in AP from 7.05% to 17.67% in normal conditions
and up to 25.82% in foggy conditions, underscore the ef-
fectiveness of our adaptations and training strategies. These
findings highlight the model’s adaptability and robustness in
varied environmental scenarios, demonstrating its potential in
real-world applications.
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