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1 Introduction

1.1 Generative model and VAE

Generative models have emerged as powerful tools for understanding and synthesizing complex data
distributions. These models aim to learn the underlying patterns of a dataset, enabling the generation
of new data samples that resemble the original dataset. Variational Autoencoders (VAEs) are one
of the foundational architectures in this domain. By combining probabilistic modeling with deep
neural networks, VAEs offer a structured framework for data generation and latent representation
learning. However, as the complexity of the data increases, traditional VAEs often struggle to capture
both global and local features effectively. This limited their generative capabilities compared to
autoregressive models[3].

A primary limitation is their reliance on a single-layer latent space, which can restrict their ability to
model high-dimensional, multi-scale data like images. This results in suboptimal reconstructions
and less realistic samples, particularly for data with intricate details. Furthermore, achieving stability
during training becomes increasingly difficult as the model depth increases, and the absence of
hierarchical representations hampers the disentanglement of latent features [3]. Recent advancements,
such as hierarchical VAEs, have attempted to address these issues, but their scalability and efficiency
remain constrained [9].

1.2 Problem statement and objective

The goal of the Very Deep Variational Autoencoder (VAE) is to address the mentioned limitations [3].
Very Deep VAE is an architecture that introduces a hierarchical structure of latent variables across
multiple layers. This design allows for the capture of global and local data features, enabling superior
generative performance on complex datasets. Through a systematic exploration of this architecture,
the we aim to: (1) Reproduce an efficient, scalable hierarchical VAE model capable of processing
more complex image data. (2) Quantitatively and qualitatively evaluate its performance on standard
and custom datasets. (3) Highlight the advantages of the Very Deep VAE in generating realistic
samples and reconstructing data with varying levels of detail.

By addressing these objectives, this study contributes to advancing the field of generative modeling,
offering insights into the potential of hierarchical architectures for complex data tasks.

2 Related Research

2.1 Autoregressive model

Autoregressive models have demonstrated impressive results in generative tasks, particularly in image
and audio synthesis. Models like PixelRNN and PixelCNN model the conditional probability of each
pixel in an image, one at a time, achieving high-quality outputs [11]. Subsequent improvements, such
as PixelCNN++, refined the discretized likelihood functions and enhanced efficiency [8]. Another
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significant contribution is WaveNet, which applied autoregressive principles to raw audio generation,
setting benchmarks in audio quality [10].

However, these models often suffer from slow sampling times due to their sequential nature, making
them less practical for large-scale applications. This limitation motivates the exploration of alternative
generative frameworks, such as hierarchical approaches.

2.2 Hierarchical VAE architecture

Variational autoencoders (VAEs) have been widely adopted for generative tasks, and hierarchical
extensions have improved their expressivity. Ladder VAEs introduced a multi-layer latent variable
hierarchy, enabling the model to capture complex, high-dimensional data distributions [9] . Impor-
tance Weighted Autoencoders (IWAE) improved the evidence lower bound (ELBO) approximation,
offering better latent variable modeling [2]. Additionally, stochastic backpropagation has been a
pivotal technique for optimizing these deep latent variable models [7].

Despite their success, hierarchical VAEs often face challenges in training stability and scalability. For
instance, as the number of latent layers increases, the optimization process becomes more sensitive,
limiting their practical application in very deep architectures.

2.3 Summarization of limitations of previous research

Autoregressive models excel at fine-grained sequential modeling but are computationally expensive,
as they require iterative sampling for each output element ([11]; [8]. On the other hand, while
VAEs offer parallelization and scalability, their generative quality can suffer due to the posterior
approximation’s limitations [5]. Hierarchical VAEs alleviate some of these issues but introduce
additional complexity in their design and training ([9]; [2]).

These limitations underline the need for models that combine the generative quality of autoregressive
approaches with the scalability of VAEs while addressing training and computational efficiency.

3 Very Deep VAE

3.1 Concept of the model

The Very Deep Variational Autoencoder (VAE) extends the traditional VAE by introducing a hi-
erarchical structure of latent variables, allowing it to model data at multiple levels of detail. This
enables the model to capture global and local features effectively, making it suitable for complex,
high-dimensional data such as images.

The encoder processes input data through layers that generate latent variables at different resolutions,
while the decoder reconstructs the data by sequentially refining details from coarse to fine. Advanced
architectural features such as residual connections, bottleneck layers, and multi-scale representations
enhance stability and efficiency during training. By aligning the hierarchical structure with a tailored
prior distribution, Very Deep VAEs learn compact, meaningful representations and excel in generative
modeling tasks.

Figure 1: VAE Model Architecture [1]
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3.2 Evidence Lower Bound (ELBO)

The foundational idea of the Very Deep VAE is based on the VAE. The structure of VAE is described
in Figure 1. In this structure, the Evidence Lower Bound (ELBO) is used as the object function.

log pθ(x) ≥ Ez∼qϕ(z|x) [log pθ(x | z)]−DKL [qϕ(z | x) ∥ pθ(z)] (1)

ELBO is described in Equation 1 [3]. The equation consist of two parts. First is reconstruction term,
which measures how likely the reconstructed image is to match the original image. This is quantified
as the log-likelihood of the data given the latent variables. The second part is the KL divergence term,
which regularizes the latent space to follow the prior distribution.

qϕ(z|x) = qϕ(z0|x)qϕ(z1|z0, x) · · · qϕ(zN |z<N , x) (2)

pθ(z) = pθ(z0)pθ(z1|z0) · · · pθ(zN |z<N ) (3)

In Very Deep VAE, there are multiple layers (N), and each term is calculated by multiplication
(Equation 2, 3). The objective function is formulated to maximize its value. In the implementations,
the sign is inverted and the problem became minimiztion problem. Calculation of ELBO loss was
implemented in source file vae helpers.py.

3.3 Novelty of Very Deep VAE and code implementation

The Very Deep VAE introduces several architectural innovations that extend the traditional Variational
Autoencoder (VAE) framework. Its primary novelty lies in its hierarchical structure, which organizes
latent variables across multiple layers, each capturing increasingly detailed aspects of the data. This
approach allows the model to encode and reconstruct complex data distributions more effectively
than a single-layer VAE. Moreover, the hierarchical nature also supports multi-scale feature learning,
which is important for generating high-quality reconstructions and diverse samples.

The Very Deep VAE incorporates a structured prior distribution that aligns with its hierarchical latent
space. This prior encourages the model to learn meaningful and disentangled representations at each
hierarchy level. As a result, the model excels in generating realistic data and provides interpretable
latent variables that can be used for tasks such as conditional generation and data analysis.

Another key aspect of the Very Deep VAE is its use of advanced architectural components, such as
residual blocks, bottleneck layers, and multi-scale feature maps. Residual connections help stabilize
training in very deep networks by enabling the flow of gradients across layers, while bottleneck layers
reduce the computational cost and ensure compact representations.

Our team studied the structure in detail and reproduced it. In a Very Deep VAE, the encoder and
decoder are designed to operate at multiple resolutions. The encoder and decoder are built as separate
modules. The modular design allows easy customization of the architecture.

3.3.1 Encoder

The encoder processes the input data through a series of blocks, progressively extracting features at
coarser and finer levels. The encoder uses convolutional layers, residual blocks, and down-sampling
to encode data into hierarchical latent variables. We defined structure of based block on base
block.py and utilize this block to organize encoder implementation. The hierarchical processing
ensures that global features, such as an image’s overall structure, and local details, such as textures
and edges, are represented in separate latent variables.

3.3.2 Decoder

The decoder mirrors this process by reconstructing the data layer by layer, starting from coarse repre-
sentations and gradually adding finer details. To enable the hierarchical structure, the DecoderBlock
code was defined, and by stacking these blocks, decoder structure was built. In the decoder module,
KL divergence and negative log-likelihood was calculated and combined to acquire ELBO loss. This
paper employs diagonal Gaussian distributions for stochastic layers, ensuring stability even in deep
architectures, which is one of the novelty of this work.
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4 Experiment

4.1 Dataset

In this report, experiments were conducted on three datasets. First, we conducted experiment utilizing
the (1) CIFAR-10 dataset and (2) ImageNet32, whcih were also evaluated in the original paper. In
addition, we conducted an additional experiment using an external dataset, the (3) Oxford 102 Flower
dataset, which was not used in the original research [6].

The ImageNet dataset consists of 1.4M of images. In this experiment, we were unable to use entire
dataset due to limited computing power. Instead, we extracted 10,000 images and conducted the
experiment. Unlike CIFAR-10 and ImageNet, which cover a diverse categories ranging from vehicles
to animals, the Oxford 102 Flower dataset focuses specifically on images of flowers. The reason for
choosing this custom dataset was to compare the model’s performance on single-purpose dataset.
The amount of data for each dataset and the train/validation/test splitting are recorded in Table 1.

Table 1: Three dataset used in the experiment

CIFAR-10 ImageNet 32 Oxford 102 Flower
Images Categories animals, vehicles various flowers only

Used in original paper Yes Yes No
Total Data 60,000 10,000 8,189
Train Data 45,000 8,100 6,583

Validation Data 5,000 900 737
Test Data 10,000 1,000 819

4.2 Model Training (and training code implementation)

The training and evaluation codes were implemented for the training process. Based on the original
paper’s hyperparameters, adjustments were made to fit the custom dataset and our hardware environ-
ment. As mentioned earlier, generative model VAE was trained using the ELBO objective function,
with the negatvie vlaue of ELBO used as the loss function.

Gradient skipping is an important method for effectively training this model with deep layers. Using
this method, the proposed model can be trained more stably. During the training loops, if the gradient
norm exceeds a certain predefined threshold, the update step for that iteration is skipped. This
gradient norm was calculated by torch.nn.utils module, and the threshold for the skipping was set to
400 for all three dataset. Moreover, an Exponential Moving Average (EMA) of model parameters
further enhances evaluation stability. Robust checkpointing stores model and optimizer states, while
built-in visualization tools (visualization.py) generate reconstructions, and logging code was
implemented to monitor progress and assess learned representations.

Table 2: Hyperparameter setting

Setting Comments
Optimizer AdamW implemented by torch.optim.AdamW, linear scheduler was used
Warm up 100 100 iterations
Learning rate 0.0002 Set based on the original paper
Epoch 100 Since our image data was only 32x32 in size, we selected rela-

tively small epoch. Validation was conducted every epoch.
num layers 45 selected based on original paper’s parameter

In the original paper, the model’s depth and hidden size varied depending on the dataset. For our
experiments, since the image size and dataset size were small, we used a relatively small number of
layers and a smaller hidden size. Our model had 45 layers and hidden size of 384, with the total of
39M parameters. In this experiment, we used an RTX 4070 GPU for training. While the original
paper employed distributed training with the Apex module [4], we implemented the training code
using a single GPU.
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4.3 Experimental results

NLL = −logpθ(x) (4)

The evaluation of the model is based on Negative Log-Likelihood (NLL) (Eq. 4). NLL evaluates
the predictive probability distribution of the model. Therefore, it is often used as an evaluation
metric in models such as VAEs and auto regressive models. In the original paper, the author used
NLL metrics for validation [3]. Here, the NLL value is indirectly derived using ELBO value. The
(-ELBO) is approximated as the NLL value and is used for comparison. Table 3 shows the experiment
result. Although there were differences in the numbers, we were able to reproduce the model from
the original paper. For comparison, Gated Pixel CNN achieved 3.83 NLL in ImageNet32 dataset
[12]. Our model had much lower NLL value. However, we used filtered version of the ImageNet32
dataset, and test dataset was much smaller. These differences may be the reason for the performance
difference.

Table 3: Experiment results for Training Time and Negative Log-Likelihood (NLL) over different
Datasets

CIFAR-10 ImageNet 32 Oxford 102 Flower
Training time 31 h 6 h 5 h

NLL 2.151 2.491 3.265

After training, we conducted visual verification on two aspects. First, we generated unconditional
images and qualitatively assessed them. Second, we reconstruct some test images from different
stages in the latent hierarchy.

Figure 2: Result on CIFAR-10, Unconditionally generated image (Above), Reconstruction using
selected layers (Below)

Figure 3: Result on 102 Flower, Unconditionally generated image (Above), Reconstruction using
selected layers (Below)

The example samples (CIFAR-10) for unconditional generation are described at the top of the Figure 2.
When qualitatively analyzed, the approximate outlines of animal shapes could be observed. However,
some images made it difficult to clearly identify the specific animal type or even confirm that it
was an animal. These results were discussed in more detail in the discussion section. The seven
images in bottom of the Figure 2 is the result comparison on various stages in the latent hierarchy. It
can be observed that low-resolution latent variables determine the broad structure of images, while
high-resolution variables are enabling finer details. This confirms that the hierarchical structure of
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the Very Deep VAE captures and generates images features step by step as intended. Figure 3 shows
the similar result for Oxford 102 Flower dataset. We can clearly see the images of the flower in this
result.

4.4 Discussion on generated images

When examining unconditionally generated images, we can see that the images generated from the
Oxford 102 Flower dataset are much clearer compared to those from the CIFAR-10 dataset, even
the CIFAR-10 model had smaller (-ELBO) value. A lower (-ELBO) value not necessarily guarantee
visually satisfactory image generation from human inspection, especially if we are comparing different
datasets.

The differences in quality arises because the Oxford 102 Flower dataset contains only flower images,
while the CIFAR-10 dataset includes a much wider variety of images, which are entirely different in
nature. This likely limited the ability of the latent variables to accurately represent the data.

5 Conclusion

The Very Deep Variational Autoencoder (VAE) demonstrates the potential of hierarchical architectures
in enhancing generative performance for complex datasets. By introducing a structured hierarchy of
latent variables and advanced architectural components, the model effectively captures both global
and local features of data. The experiments conducted on CIFAR-10 , ImageNet32 and the Oxford
102 Flower dataset highlight the scalability and adaptability of the model, with notable improvements
in image generation quality and feature representation.

Despite these successes, challenges remain in optimizing for datasets with diverse categories, such as
CIFAR-10, where deeper networks and more computational resources could further enhance perfor-
mance. Future work could explore these avenues alongside integrating larger datasets and additional
hierarchical priors to expand the model’s applicability. This study underscores the importance of
combining scalability, efficiency, and generative quality in designing next-generation VAEs, paving
the way for advancements in generative modeling across a wide array of applications.

6 Contribution by Group Members

Name Contribution
Seongju Contributed on explaining Method section on proposal. Mainly focused on

implementing training related code (train.py, train setup.py, and utils
train.py). Run the experiment code and debug the errors in the code integra-
tion. Conduct experiments for each dataset. Wrote experiment and result part
on the final report.

Tung Worked on the proposal’s Plan section, configured environment setting to run
the repo, worked on vae.py, created train.ipynb on Tung Do branch, added
checkpoint load/save and loss save functions to train.ipynb, ran the model’s
training with laptop GPU, reproduce the code in decoder.py, DmolNet.py,
encoder.py, and new vae.py on main branch, worked on Very Deep VAE
section in the final report.

Nikhil Whiteboarded and planned out the different files required for the project, then
the specific functions to streamline the coding process/write efficient code.
Implemented the helper functions for vae, train, and other utils, set hyperparam-
eters.py, and base block.py. Ran the model’s training with Macbook’s GPU
to ensure replicability of results over multiple systems.

Elizabeth Researched and found the paper used for replication and experimentation in the
project. Performed literature research on relveant works necessary for successful
compeletion and understanding of the model. Simplified and reorganized the
data.py visualization.py and preprocessing custom dataset.py for a stream-lined
and easy to update data loading and preprocessing pipeline allowing for easy
experimentation. Worked on introduction and related works.
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