Autonomous/Remote Control Mecanum

Wheels Tesla Roadster

Tung Do
Electromechanical Engineering
Electromechanical Engineering Technology Department
College of Engineering

California State Polytechnic University, Pomona

A
4\ CalPolyPomona

@,

Dol

Do 2

Summary
e Abstract: This project aims to apply everything the student has learned in engineering
about mechanics, machine elements, programming, and electronics to build a Mecanum
Wheels Tesla Roadster to research the possibility of flexible movement in developing a
smart vehicle network.

e Keywords: Mecanum, Robot, Wheel, Tesla, smart car, innovative vehicle, network

Do 3

Table of Contents
l. List of figures and listof tables.............c.oo i 4
. INEFOTUCTION. ... et 5
1. DBSIGN PIOCESS. ... v ettt ettt e e e e e e e 6
a. Analysis (software) simulation, theory.................ooooiiiiiii i 6
b. Building the product.............coiiiiii e 8
c. Experimental testing and resultsand data.................ccooiiiiiiiiiiiiii 41
I B ol o] o 42
a. Detail of the build-up of the artifact..................oooiiiiiiii 42
D, EQUIPMENTUSEA.ot 42
c. Setup procedures and final results..............ooiiiiiiiii 43
V. CONCIUSIONS. ...t 46

VI.

RET O N CES. oo 47

1. List of figures and list of tables

Materials and dimensions

The material for this project will be the PLA used in the 3D printer since most of the parts of the

Do 4

project will be 3D printed. In addition, a small portion will use stainless steel, such as wheel

axles, universal mounting hubs, and bolts. The roller can be improved with rubber or TPU to

increase the friction for gripping.

Length Width Height | Diameter | Weight | Quantity
(mm) (mm) (mm) (mm) (9)
Mega Arduino 110 55 15 N/A 2
DC Motor 42 42 40 5 218 4
Li-Po Battery 140 45 40 N/A 412 1
Wheel case N/A 45 N/A 75 82 4
Roller 50 N/A N/A 10 8 40
Chassis (final) 300 200 80 N/A 560 1
Body 300 200 100 N/A 1470 1
Universal mounting hub N/A N/A 13 33 4
Wheel axle 55 N/A N/A 3 3
M4 bolts and nuts 50 N/A N/A 4 50
M3 bolts and nuts 10 N/A N/A 3 50
Radio communication NRF24L01 module 2
Ultrasonic sensor HC-SR04 module 4
H-Bridge 2

Do 5

Pre-built mecanum wheel

10000mAh power bank

2. Introduction
Throughout my life, | have seen many times that countries are fighting for oil and fossil fuels,
which are finite and cause pollution and greenhouse gases. In my senior year, the energy crisis
escalated between Russia and Ukraine, which made me think, what if | can find a solution to
replace fossil fuels with environment-friendly electric vehicles to save the environment and
people will no longer depend on fossil fuels? Therefore, in the Spring of 2022, | began my
research with Dr. Scott Boskovich about researching and building a prototype of a Tesla
Roadster with full functions, then implementing the mecanum wheels (omnidirectional wheels)
on it to examine the potential of replacing the current wheel to push the potential of electric cars
into smart cars. What if, in the future, humans use a system of intelligent vehicles that can
communicate with each other and run-on autopilot? Then the mecanum wheel has a huge
advantage in this system for using less space for rotating, changing lanes, and saving space. And
when it comes to developing smart cars, my top choice is Tesla electric cars since they are
optimized for this case. I designed my project based on the Tesla car’s structure so everyone can
have a realistic look at this project in practice.
“Mecanum wheel is an omnidirectional wheel design for a land-based vehicle to move in any
direction” (Wikipedia, 2021). The mecanum wheel was invented by Bengt llon, a Swedish
company Mecanum AB engineer, in 1973. The mecanum wheels are designed to achieve a 180-
degree turn without taking much space, while the regular wheel with a driving wheel would take

more time and space. This is useful in small areas such as industrial factories with loads of

Do 6

merchandise and a minor pathway for the forklift to move around and pick up the merchandise.
However, the current mecanum wheel design can only operate on flat hard surfaces and perform
poorly on rough terrains.

The requirement for the wheels:

1. Based on its current purpose, the mecanum wheel should be designed to support daily
support. Each pack of conventional wheels weighs an average of 60 Ibs, which is a total
of 240 Ibs. On average, an everyday sedan can support 3000 Ibs. Therefore, in our project
scale, the vehicle should be able to handle a load of (3000-240)/240 = 11.5 times more
significant than the wheels’ weight.

2. For primary purposes such as working indoors, the speed of the wheels is optional to be
high. However, if we want to implement it on a daily vehicle, the rate needs to be much
higher for local and highway travel.

3. For advanced purposes, the project must implement autonomous functions such as object-
avoiding and self-parking systems on the vehicle. This application is also helpful for
daily cars.

Risk assessment:

1. Motor: may not be strong enough or may burn during operating
o Backup plan: using a more robust motor or regulating the current and voltage
through the motor with capacitors.
2. Material: may not be strong enough to support the required weight
o Backup plan: redesign the vehicle or use a different material
3. Design Process

a. Analysis (software) simulation, theory

Do7

The Mecanum wheel is designed based on the principle of how an object moves when we take
the resultant force from the diagonal wheels. The most important thing to remember when
designing a mecanum wheel vehicle is that all the surface-touching roller axes must point toward

the vehicle's center.

1881 18741 18]2

IEL*JEI ! I ﬁiﬁ
1878 18480 1y g
RPR's REIPPLVRPT

Figure 1. The Mecanum principle (Wikipedia)

h\\Y
-

To accomplish this, the Mecanum wheels have a unique design concept, with the actual wheel

being a group of multiple smaller rollers at a specific angle, typically 45 degrees.

* Wheel rotation

Roller axis Passive roller
—r N

" I Roller rotation

()

Figure 2. The Mecanum wheel design

Do 8

b. Building the product:

The process is implemented efficiently to save building costs and time and to reduce mistakes to
a minimum.

1. Using Solidworks, design the mecanum wheels, including the wheel cover and roller.
For the basic design, I followed the video
named “Tutorial Mecanum Wheel
SolidWorks PFA ULT 2020-2021” on
YouTube, and then I modified some
dimensions to fit the case of the project. |
designed the wheel cover and the shaft
coupler separately since | wanted to switch

sides with the same wheel model to save time

in the design process.
Figure 3. Mecanum wheel design using SolidWorks.
2. 3D print the wheel cover and rollers, cut the rod for the rollers’ axles, and assemble the

wheels.

Do 9

Figure 4. Manufacturing mecanum wheel process

This work needs to be done carefully due to its danger from tools and the precision of the axle

length.

A few axles needed to be shortened, but
overall, the first attempt at the model worked
well.

However, this first design had many problems:
- The shaft coupler's first design was not good
for the bolt to go through since the shaft holder
and the bolt hole was in the same line, so they
crossed each other, so | had to rotate the shaft
45 degrees compared to the holder.

- There is so much space between the two
covers, and much of the rod material is
revealed. Due to that, the wheel width is
unnecessarily bigger, so | shortened the
extrude inside by 5mm.

- The initial diameter of the rollers was too

big, which made their clearance between each

Do 10

other negative. Moreover, the roller's hole diameter was too big, giving them too much
space to wiggle around; sometimes, they scratched each other and did not roll. It also
created a clearance problem between the roller and the cover. Therefore, | reduced the
roller's diameter and the hole's diameter.

The shaft couple printed by PLA is not strong enough to hold the motor shaft, so I chose
the universal mounting hub, which is made of steel and can hold the shaft using a better
tighten screw.

However, the hub can only hold the wheel on one axis. The wheel could wiggle around if

the hole of the wheel cover had space, so | reduced the body's gap to fit the motor shaft

by nearly 100%.

I adjusted the dimensions for bolts, motor shaft,
and rollers’ diameter and repeated until the result
satisfied the requirement for good operation.
Repeating the same procedure, | manufactured

three more wheels, ready for testing.

Figure 5. Proper mecanum wheel

Do 11

Figure 6. The whole mecanum wheel system

3. Using Solidworks, design the chassis.
The first idea when | designed the chassis was to create a platform with motor holders so that |
could assemble the chassis and the wheels to test the fit and dimensions. It was a simple design
with a small thickness to reduce the 3D print time. However, that thickness causes the chassis to

be unstable and malfunction for testing.

Do 12

Figure 7. First chassis version
The second chassis was like the first one, with a minor update in the thickness. | also
designed a chamber for Arduino Mega and the Li-Po battery beneath it because | planned to

hide the power source beneath the furniture the same way a real Tesla car does.

Do 13

Figure 8. Second chassis version
However, | needed more time to finish other decorative features because | started focusing on
the autonomous functions. Therefore, | modified the chassis to focus on the autonomous
features, removing the chamber and increasing the thickness for stability. | designed the head
and the tail more extensively to get more weight to balance with the inside body since the
chassis body was acting as a rigid body and kept bending inward due to a load of electronic
components. The spacing between the wheels is also increased to fit the simple design of the
Tesla Roadster car. | also designed some attachment parts on the edge of the chassis for later
assembly. The previous versions of the chassis were designed to hold stepper motors.
However, stepper motors were unsuitable for this project and were changed to DC motors
during the testing process. Therefore, this final version has different holders for stepper

motors.

Figure 9. Final chassis version

Do 14

4. 3D print and assemble the chassis.

I had to split and print my chassis
as multiple parts because my

printer was too small.

Figure 10. 3D print the chassis as

parts.

Do 15

Figure 11-14. The first chassis

Do 16

Figure 15-16. The second chassis

Do 17

Figure 17. Prototype of final chassis
5. Using Solidworks, design the Tesla Roadster body based on the diagram from Google.
Since the Tesla Roadster has yet to be released, | must design it on SolidWorks from an old

diagram found on Google.

Figure 18. The Tesla Roadster’s diagram from Google

Do 18

| tried to model the Tesla Roadster using the Loft Surface feature in SolidWorks. The result
looks magnificent, but I could not get it enclosed to save as a .stl file for 3D printing. There

must have been some incompatible errors between the Loft Surface and the 3D sketch model.

Figure 19. The first attempt to model the Tesla Roadster
Therefore, | must do the simple way of extruding and cutting since | would not have enough
time to troubleshoot the problem with the first attempt. I made the result look the most like

the diagram and enough for testing.

Figure 20. Result of modeling Tesla Roadster

Do 19

6. 3D print and assemble the Tesla Roadster body.
Having the same problem with the small printer’s bed size, I had to split the vehicle’s body into

multiple parts again and used glue to assemble it.

Figure 21-22. Assemble the Tesla Roadster from 3D-printed parts.

Do 20

7. Assemble the final mechanical design.
The final mechanical design added four ultrasonic sensors to do object avoidance and self-
parking in parallel. Due to the requirements for results, | asked Dr. Boskovich for permission to

use the better quality mecanum wheels instead of the 3D printed ones with PLA material.

PIC-COLLAGE

Figure 23. Comparison of final assemble with a photo of Tesla Roadster

Do 21

Figure 24-26. Final mechanical design with ultrasonic sensors

8. Connect all wheels, DC motors, H-bridges, and other electronic components to the

Arduino board.

Figure 27-28. Inside view with electronic components

9. Test to ensure all wheels operate as expected together from the Arduino board.

I must ensure the DC motors are powered enough to run and support the body's load and chassis.

Do 23

Figure 29. Testing
10. Build a handheld controller to control the wheel using a transceiver and receiver.
| made a controller with a potentiometer to switch between modes, including static (when the
vehicle is not moving), manual control (the controller can control the vehicle), and autonomous
functions (the car will automatically operate on its own). The manual control uses the
NRF24L01 radio communication module to communicate with the same one on the vehicle. The

range is about 160 ft and can be extended further using the antenna.

Figure 30. Controller for manual control

11. Program and test to ensure the following features:

The code for the controller (transmitter):

o The vehicle can be remote controlled using the controller

transmitter.ino

L LNV R WN P

OOV VUL LU U U S S S DD DS S DB D WWWWWWWWWwWNNRNRNRNNRNRNRRBRR B 2 2 2 2 2 2
H SO WO NOWLE WNREWOSNOWEWNERFEWOSNOOWMLHESE WNERFEW SNOOOWE WNERESWOWEENOO WM E WNRES

»
H

#include <SPI.h>
#include <nRF24L01.h>
#include <RF24.h>

//DECLARE VARIABLES
int vehicleState;
int chargingState;
int wiperState;

//Joysticks

#define j1PotX A2
#define j1lPotY A3
#define j2PotX A@
#define j2PotY Al

//Servo

int wheelAngle;

int turnSteer;

int sideSteer;

t hoodAngle;

int leftDoorAngle;
int rightDoorAngle;
int leftWindowAngle;
int rightWindowAngle;

=1

i

=1

//Buttons

int leftSignalButtonPin = 3;
int newLeftSignalButton;

int oldLeftSignalButton;

int rightSignalButtonPin = 4;
int newRightSignalButton;
int oldRightSignalButton;

t emergencyButtonPin = 5;
int newEmergencyButton;

t oldEmergencyButton;

int chargingButtonPin = 2;
int newChargingButton;

int oldChargingButton;

int wiperButtonPin = 6;

int newWiperButton;

int oldWiperButton;

==

3 >

i

=1

i

=1

//Potentiometers

#define vehicleStatePin A15
int vehicleStatePot;
#define vehicleSpeedPin Al4
#define headlightPin A13
int headlightPot;

#define hoodPin A12

#define leftDoor All
#define rightDoor Al@
#define leftWindow A9
#define rightWindow A8

//LEDs

int redPin = 27;

int greenPin = 25;

int bluePin = 23;

int leftSignalLEDState = @;
int rightSignallLedState = @;
int emergencyLEDState = @;

Do 24

Do 25

63 //RF24

64 RF24 radio(49, 48); // nRF24L01 (CE, CSN)

65 //const byte address[][6] = {"00001","00002","00003"}; // Address
66 const byte address[6] = "0ee01";

68 //CONSTRUCT DATA PACKAGE
69 // Max size of this struct is 32 bytes - NRF24L01 buffer limit
70 struct Data_Package {

71 byte j1PotX;

72 byte j1PotY;

73 byte j2PotX;

74 byte j2PotY;

75 byte vehicleState;

76 byte vehicleSpeed;

77 byte wheelAngle;

78 byte headlightPot;

79 byte leftSignalLEDState

80 byte rightSignalLEDState

81 byte emergencyLEDState =

82 byte chargingState = 0;

83 byte hoodAngle;

84 byte wiperState = 0;

85 byte leftDoorAngle;

86 byte rightDoorAngle;

87 byte leftWindowAngle;

88 byte rightWindowAngle;

89 byte leftSignalLEDState_4;

920 byte rightSignalLEDState_4;

91)

92 Data_Package data; //Create a variable with the above structure
93

94 //SETUP

95 void setup() {

96 //Serial

97 Serial.begin(9600);

98

99 //Radio communication

100 radio.begin();

101 // radio.openWritingPipe(address[1]); // address used is "00002"
102 radio.openWritingPipe(address);
103 radio.setAutoAck(false);

104 radio.setDataRate(RF24_250KBPS) ;
105 radio.setPALevel(RF24_PA_LOW);
106 radio.setChannel(9);

107

108 // Set initial default values
109 data.j1PotX = 127; // Values from @ to 255. When Joystick is in resting position, the value is in the middle, or 127.
110 data.j1lPotY = 127;

111 data.j2PotX = 127;

112 data.j2PotY = 127;

113 data.vehicleState = 1;

114 data.vehicleSpeed = 100;

115 data.wheelAngle = 88;

116 data.headlightPot = 0;

117 data.leftSignalLEDState =

118 data.rightSignalLEDState =
119 data.emergencyLEDState = 0;
120 data.chargingState = 0;

121 data.hoodAngle = 0;

122 data.wiperState = 0;

123 data.leftDoorAngle = 0;

_124 | data.riahtDoorAnale = 0:

124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184

data.rightDoorAngle = 0;
data.leftWindowAngle = 0;
data.rightWindowAngle = 0;

//pinModes

pinMode(redPin, OUTPUT);
pinMode(greenPin, OUTPUT);
pinMode(bluePin, OUTPUT);
pinMode(headlightPin, INPUT);
pinMode(leftSignalButtonPin, INPUT);
pinMode(rightSignalButtonPin, INPUT);
pinMode(emergencyButtonPin, INPUT);

//EXECUTION
void loop() {

radio.stopListening(); //Set the module as trasnmitter
read_vehicleState();
read_vehicleSpeed();
read_headlightBrightness();
read_joystick();
read_dataSteeringWheel();
read_leftSignalState();
read_rightSignalState();
read_emergencyState();
read_chargingState();
read_hoodAngle();
read_wiperState();
read_leftDoorAngle();
read_rightDoorAngle();
read_leftWindowAngle();
read_rightWindowAngle();

radio.write(&data, sizeof(Data_Package)); // Send the whole data

//SWITCH CASE FUNCTION
void read_vehicleState() {

vehicleStatePot = map(analogRead(vehicleStatePin), @, 1023, 0, 2);
if (vehicleStatePot >= @ && vehicleStatePot < 1) {
digitalWrite(redPin, HIGH);
digitalWrite(greenPin, LOW);
digitalWrite(bluePin, LOW);
vehicleState = 1;
}
else if (vehicleStatePot >= 1 && vehicleStatePot <= 2) {
digitalWrite(redPin, LOW);
digitalWrite(greenPin, HIGH);
digitalWrite(bluePin, LOW);
vehicleState = 2;

//READ SIGNAL STATE FUNCTION
void read_leftSignalState() {

newLeftSignalButton = digitalRead(leftSignalButtonPin);
if (oldLeftSignalButton == @ && newLeftSignalButton == 1) {
if (data.leftSignalLEDState == @) {
data.leftSignalLEDState = 1;
}

Do 26

from the structure to the receiver

185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244

else {
data.leftSignalLEDState = 0;
¥
¥
oldLeftSignalButton = newlLeftSignalButton;
}

void read_rightSignalState() {
newRightSignalButton = digitalRead(rightSignalButtonPin);
if (oldRightSignalButton == @ && newRightSignalButton == 1) {
if (data.rightSignalLEDState == @) {
data.rightSignalLEDState = 1;

}
else {
data.rightSignalLEDState = @;
¥
¥
oldRightSignalButton = newRightSignalButton;
}

void read_emergencyState() {
newEmergencyButton = digitalRead(emergencyButtonPin);
if (oldEmergencyButton == @ && newEmergencyButton == 1) {
if (data.emergencyLEDState == @) {
data.emergencyLEDState = 1;

}
else {
data.emergencyLEDState = 0;
}
}
oldEmergencyButton = newEmergencyButton;
b

//READ CHARGING STATE FUNCTION
void read_chargingState() {
newChargingButton = digitalRead(chargingButtonPin);
if (oldChargingButton == @ && newChargingButton == 1) {
if (data.chargingState == @) {

data.chargingState = 1;
¥
else {
data.chargingState = @;
}
}
oldChargingButton = newChargingButton;
}

//READ DOOR ANGLE
void read_leftDoorAngle() {
data.leftDoorAngle = map(analogRead(leftDoor), @, 1023, @, 179);
¥
void read_rightDoorAngle() {
data.rightDoorAngle = map(analogRead(rightDoor), @, 1023, @, 179);
¥

//READ WINDOW ANGLE
void read_leftWindowAngle() {
data.leftWindowAngle = map(analogRead(leftWindow), @, 1023, 0, 179);
b
void read_rightWindowAngle() {
data.rightWindowAngle = map(analogRead(rightWindow), @, 1023, @, 179);
¥

Do 27

246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295

296
207

//READ WIPER STATE FUNCTION
void read_wiperState() {
newWiperButton = digitalRead(wiperButtonPin);

if (oldWiperButton == @ && newWiperButton == 1) {

}

if (data.wiperState == @) {
data.wiperState = 1;

}

else {
data.wiperState

0;
}
}
oldWiperButton = newWiperButton;

//READ HEADLIGHT FUNCTION
void read_headlightBrightness() {
data.headlightPot = map(analogRead(headlightPin), @, 1023, @, 255);

¥

//READ VEHICLE SPEED FUNCTION
void read_vehicleSpeed() {
data.vehicleSpeed = map(analogRead(vehicleSpeedPin), @, 1023, @, 255);

}

//READ HOOD ANGLE FUNCTION
void read_hoodAngle() {
data.hoodAngle = map(analogRead(hoodPin), @, 1023, 0, 179);

}

//READ JOYSTICK FUNCTION
void read_joystick() {
// Read all analog inputs and map them to one Byte value

data.j1lPotX = map(analogRead(j1PotX), @

Serial.println(data.j1PotX);

data.j1PotY = map(analogRead(j1PotY), @

Serial.println(data.j1PotY);

, 1023, 0, 255); // Convert the ana

, 1023, 0, 255);

data.j2PotX = map(analogRead(j2PotX), @, 1023, @, 255); // Convert the ana

data.j2PotY = map(analogRead(j2PotY), @

//READ DATA FOR STEERING WHEEL FUNCTION
void read_dataSteeringWheel() {

}

turnSteer = map(analogRead(j2PotX), 0,

sideSteer = map(analogRead(j1PotX), 0,

if (sideSteer < 80 || sideSteer > 100)
data.wheelAngle = sideSteer;

}

if (turnSteer < 80 || turnSteer > 100)
data.wheelAngle = turnSteer;

X

. 1023, 0, 255);

1023, 0, 179);
1023, 0, 179);
{

Do 28

The code for vehicle in manual control (receiver):

receiveri.ino

1 #include <SPI.h>

2 #include <nRF24L01.h>

3 #include <RF24.h>

4 #include <L298NX2.h>

5

6 //DECLARE VARIABLES

7 float dtl = 1.5;

8

9 //RF24

10 RF24 radio(49, 48); // nRF24L@1 (CE, CSN)
11 const byte address[6] = "00001";
12 unsigned long lastReceiveTime = 0;
13 unsigned long currentTime = 04
14

15

16

17 // Pin definition

18 const unsigned int EN_FL = 23;
19 const unsigned int IN1_FL = 25;
20 const unsigned int IN2_FL = 24;
21

22 const unsigned int IN1_FR = 27;
23 const unsigned int IN2_FR = 26;
24 const unsigned int EN_FR = 22;
25
26 const unsigned int EN_RL = 29;
27 const unsigned int IN1_RL = 31;
28 const unsigned int IN2_RL = 33;
29
30 const unsigned int IN1_RR = 30;
31 const unsigned int IN2_RR = 32;
32 const unsigned int EN_RR = 28;
33
34 // Initialize both motors
35 L298NX2 Fmotors(EN_FL, IN1_FL, IN2_FL, EN_FR, IN1_FR, IN2_FR);
36 L298NX2 Rmotors(EN_RL, IN1_RL, IN2_RL, EN_RR, IN1_RR, IN2_RR);
37
38 // Initial speed
39 unsigned short FLspeed = 128;
40 unsigned short FRspeed = 128;
41 unsigned short RLspeed = 128;
42 unsigned short RRspeed = 128;
43
44 int wheelSpeed;
45
46 //CONSTRUCT DATA PACKAGE
47 // Max size of this struct is 32 bytes - NRF24L01 buffer limit
48 struct Data_Package {
49 byte j1PotX;
50 byte j1PotY;
51 byte j2PotX;
52 byte j2PotY;
53 byte vehicleState;
54 byte vehicleSpeed;
55 byte wheelAngle;
56 byte headlightPot;
57 byte leftSignallLEDState;
58 byte rightSignallLEDState;
59 byte emergencyLEDState;
60 byte chargingState;
61 byte hoodAngle;

Do 29

62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88

90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120

122

byte wiperState;

byte leftDoorAngle;

byte rightDoorAngle;

byte leftWindowAngle;

byte rightWindowAngle;

byte leftSignalLEDState_4;
byte rightSignalLEDState_4;
byte vehicleMovement;

h

Data_Package data; //Create a variable with the above

//SE
void
//

TUP
setup() {
Radio communication

radio.begin();
radio.openReadingPipe(1, address);
radio.setAutoAck(false);
radio.setDataRate(RF24_250KBPS) ;
radio.setPALevel(RF24_PA_LOW);

ra

//
Se

//EX
void
ch

dio.setChannel(9);

Serial
rial.begin(9600);

ECUTION
loop() {
eckConnection(); // Check whether there is data

structure

to be received

radio.startListening(); // Set the module as receiver

if

}

(radio.available()) {

radio.read(&data, sizeof(Data_Package)); // Read the whole data and store it into the 'data' structure

lastReceiveTime = millis(); // At this moment we

switch (data.vehicleState) {

111/
void

case 2:
Serial.println("case 2");
delay(dt1);
Serial.print("j1PotX = ");
Serial.println(data.j1PotX);
Serial.print("j1PotY = ");
Serial.println(data.j1PotY);
runMotor_2();
delay(dt1);
break;

case 3:
runMotor_3();
break;

case 4:
break;

STEPPER MOTOR FUNCTION
runMotor_3() {
if (data.vehicleMovement == 1) {
moveSidewaysRight();
delay(10);
}
else {
stopMoving();

have received the data

Do 30

123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183

/7 }
//Execute the steps

Fmotors.setSpeedA(255);
Fmotors.setSpeedB(255);
Rmotors.setSpeedA(255);
Rmotors.setSpeedB(255);

}

void runMotor_2() {

// if (data.jlPotY > 160) {

// rotateLeft();
/! // delay(dtl);
//}

// else if (data.jlPotY < 100)

// rotateRight();
// [/ delay(dtl);
//}

if (data.jlPotX > 160) {

turnLeft();
// delay(dt1l);

}

else if (data.jlPotX
turnRight();
// delay(dtl);

}

else if (data.j2PotY
moveBackward();
// delay(dtl);

}

else if (data.j2PotY
moveForward();
// delay(dtl);

}

else if (data.j2PotX
rotateRight();
// delay(dtl);

}

else if (data.j2PotX
rotateLeft();
// delay(dtl);

+

else {
stopMoving();
// delay(dtl);

+

// Execute the steps

>

<

100) {

30) {

220) {

100) {

160) {

Fmotors.setSpeedA(FLspeed);
Fmotors.setSpeedB(FRspeed) ;
Rmotors.setSpeedA(RRspeed) ;
Rmotors.setSpeedB(RLspeed);

}

void moveForward() {
Fmotors.backwardA();
Fmotors.backwardB();
Rmotors. forwardA();
Rmotors.backwardB();

s

void moveBackward() {
Fmotors. forwardA();
Fmotors. forwardB();
Rmotors.backwardA();

Rmotors. forwardB();

Do 31

Do 32

184 }

185 void turnRight() {

186 Fmotors.backwardB();
187 Rmotors.forwardA();
188 }

189 void turnLeft() {

190 Fmotors.backwardA();
191 Rmotors.backwardB();
192}

193 void rotateLeft() {

194 Fmotors.forwardA();
195 Fmotors.backwardB();
196 Rmotors.forwardA();
197 Rmotors.forwardB();
198 }

199 void rotateRight() {

200 Fmotors.forwardB();
201 Fmotors.backwardA();
202 Rmotors.backwardA();
203 Rmotors.backwardB();
204 }

205 void moveRightForward() {
206 Fmotors.backwardA();
207 Rmotors.forwardA();
208 }

209 void moveRightBackward() {
210

211 1}

212 void movelLeftForward() {
213 Fmotors.backwardB();
214 Rmotors.backwardB();
215 }

216 void moveLeftBackward() {
217

218 }

219 void stopMoving() {

220 Fmotors.stop();

221 Rmotors.stop();

222 }

223

224 //CHECK CONNECTION FUNCTION
225 void checkConnection() @

226 // Check whether we keep receving data, or we have a connection between the two modules

227 currentTime = millis();

228 if (currentTime - lastReceiveTime > 1000) { // If current time is more then 1 second since we
229 resetData(); // If connection is lost, reset the data. It prevents unwanted behavior, for exa
230 }

231

232

233 //RESET DATA FUNCTION
234 void resetData() {

235 // Reset the values when there is no radio connection - Set initial default values
236 data.jlPotX = 127;

237 data.jlPotY = 127;

238 data.j2PotX = 127;

239 data.j2PotY = 127;

240 data.vehicleState = 1;

241 data.vehicleSpeed = 100;

242 data.wheelAngle = 88;

243 data.headlightPot = 0;

244 data.leftSignalLEDState = 0;

245
246
247
248
249
250
251
252
253
254
255
256
257

data.
data.
data.
data.
data.
data.
data.
data.
data.
data.
data.

rightSignalLEDState = 0;
emergencyLEDState = 0;
chargingState = 0;
hoodAngle = 0;

wiperState = 0;
leftDoorAngle = 0;
rightDoorAngle = 0;
leftWindowAngle = 0;
rightWindowAngle = 0;
leftSignalLEDState_4 = 0;
rightSignalLEDState_4 = 0;

Do 33

The car can run autonomously and implement activities like object avoidance and

self-parking in parallel.

Figure 31. Prototype for autonomous functions

Object avoidance:

object avoidance.ino

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

#include <L298NX2.h>
#include <NewPing.h>

#define MAX_DISTANCE 500

#define SONAR_NUM 4 // Number of sensors.

unsigned int cm[SONAR_NUM]; // Where the ping distances are stored.

unsigned long currentTimer = 0;
unsigned long previousTimer = 0;

NewPing sonar[SONAR_NUM] = { // Sensor object array.

Do 34

NewPing(48, 49, MAX_DISTANCE), // Each sensor's trigger pin, echo pin, and max distance to ping.

NewPing(46, 47, MAX_DISTANCE),
NewPing(44, 45, MAX_DISTANCE),
NewPing (4@, 41, MAX_DISTANCE)

¥s

int nl1 = random(150, 350);
int n2 = random(150, 175);

float temp = 23.7; //Temp in C degree
float factor = sqrt(1 + temp / 273.15) / 60.368;

const unsigned int EN_FL = 2;

const unsigned int IN1_FL = 25;
const unsigned int IN2_FL = 24;
const unsigned int IN1_FR = 27;
const unsigned int IN2_FR = 26;

const unsigned int EN_FR = 3;

const unsigned int EN_RL = 6;
const unsigned int IN1_RL = 31;
const unsigned int IN2_RL = 33;

const unsigned int IN1_RR = 30;
const unsigned int IN2_RR = 32;
const unsigned int EN_RR = 5;

L298NX2 Fmotors(EN_FL, IN1_FL, IN2_FL, EN_FR, IN1_FR, IN2_FR);
L298NX2 Rmotors(EN_RL, IN1_RL, IN2_RL, EN_RR, IN1_RR, IN2_RR);

int speed = 255;

int directionA = L298N::FORWARD;
int value = 0;

int distancel;

int distanceR;

int distanceFL;

int distanceFR;

int distance;

unsigned short FLspeed = speed;
unsigned short FRspeed = speed;
unsigned short RLspeed = speed;

unsigned short RRspeed = speed;

Do 35

60 void setup() {

61 Serial.begin(9600);

62 setSpeed();

63

64 previousTimer = millis();

65 }

66

67 void loop() {

68 currentTimer = millis();

69 distanceFL = (float)sonar([2].ping_median(5) * factor;
70 distanceFR = (float)sonar[3].ping_median(5) *x factor;
71

72 if (distanceFR <= 40 || distanceFL <= 40) {

73 moveBackward();

74 delay(100);

75 stopMoving();

76 delay(500);

77 moveBackward() ;

78 delay(n2);

79 stopMoving();

80 delay(300);

81 if (currentTimer - previousTimer >= 1UL) {

82 distanceFL = (float)sonar([2].ping_median(5) % factor;
83 distanceFR = (float)sonar[3].ping_median(5) * factor;
84 Serial.print("previousTimer = ");

85 Serial.printin(previousTimer);

86 Serial.print("currentTimer = ");

87 Serial.printn(currentTimer);

88 Serial.print("distanceFL = ");

89 Serial.printin(distanceFL);

90 Serial.print("distanceFR = ");

91 Serial.printin(distanceFR);

92 previousTimer = currentTimer;

93 }

94 if (value == 0) {

95 distanceR = (float)sonar([@].ping_median(5) * factor;
96 distanceL = (float)sonar[1].ping_median(5) * factor;
97 Serial.print("distanceR = ");

98 Serial.println(distanceR);

99 Serial.print("distanceL = ");

100 Serial.printin(distancel);

101 value = 1;

102 }

103 if (distanceR >= distancelL) {

104 if (distanceR < 20) {

105 stopMoving();

106 }

107 else {

108 Serial.println("Now rotate right ");

109 rotateRight();

110 delay(nl);

111 }

112 value = 0;

113 }

114 if (distanceL > distanceR) {

115 if (distanceL < 20) {

116 stopMoving();

117 }

118 else {

119 Serial.println("Now rotate left");

120 rotateLeft();

121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181

delay(nl);
}

value = 0;

}

else {
Serial.print("distanceFL = ");
Serial.println(distanceFL);
Serial.print("distanceFR = ");
Serial.println(distanceFR);
moveForward();

}

// rotateRight();

}

void setSpeed() {
FLspeed = speed;
FRspeed = speed;
RLspeed = speed;
RRspeed = speed;
Fmotors.setSpeedA(FLspeed);
Fmotors.setSpeedB(FRspeed) ;
Rmotors.setSpeedA(RRspeed) ;
Rmotors.setSpeedB(RLspeed) ;

void moveForward() {
Fmotors.setSpeedA(165) ;
Fmotors.setSpeedB(165) ;
Rmotors.setSpeedA(165);
Rmotors.setSpeedB(165);
Fmotors.backwardA();
Fmotors.backwardB();
Rmotors.forwardA();
Rmotors.backwardB();

}

void moveBackward() {
Fmotors.setSpeedA(255);
Fmotors.setSpeedB(255);
Rmotors.setSpeedA(255);
Rmotors.setSpeedB(255);
Fmotors.forwardA();
Fmotors.forwardB();
Rmotors.backwardA();
Rmotors.forwardB();

¥

void turnRight() {
Fmotors.backwardB();
Rmotors.forwardA();

¥

void turnLeft() {
Fmotors.backwardA();
Rmotors.backwardB();

}

void rotateLeft() {
Fmotors.setSpeedA(255);
Fmotors.setSpeedB(255);
Rmotors.setSpeedA(255);
Rmotors.setSpeedB(255);
Fmotors.backwardA();
Fmotors.forwardB();

Do 36

Do 37

182 Rmotors.forwardA();

183 Rmotors.forwardB();

184 }

185 void rotateRight() {

186 Fmotors.setSpeedA(255);
187 Fmotors.setSpeedB(255);
188 Rmotors.setSpeedA(255);
189 Rmotors.setSpeedB(255);
190 Fmotors.backwardB();
191 Fmotors.forwardA();

192 Rmotors.backwardA();
193 Rmotors.backwardB();
194 }

195 void moveRightForward() {
196 Fmotors.backwardA();
197 Rmotors.forwardA();

198 }

199 void moveRightBackward() {
200

201}

202 void moveLeftForward() {
203 Fmotors.backwardB();
204 Rmotors.backwardB();
205}

206 void moveLeftBackward() {
207

208 }

209 void stopMoving() {

210 Fmotors.stop();

211 Rmotors.stop();

212 i}

Self-parking:

auto parking.ino

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61

#include <L298NX2.h>
#include <NewPing.h=>

#define MAX_DISTANCE 500

#define SONAR_NUM 4 // Number of sensors.

unsigned int cm[SONAR_NUM];

unsigned long currentTimer = @;
unsigned long previousTimer = @;

NewPing sonar [SONAR_NUM] = {

// Where the ping distances are stored.

// Sensor object array.

Do 38

NewPing(48, 49, MAX_DISTANCE), // Each sensor's trigger pin, echo pin, and max distance to ping.
NewPing(46, 47, MAX_DISTANCE),
NewPing(44, 45, MAX_DISTANCE),
NewPing(48, 41, MAX_DISTANCE)

I

int nl
int n2

= random(15@, 350);
= random(15@, 175);

int dist[12];
int command = @;

float
float

const
const
const

const
const
const

const
const
const

const
const
const

L298NX2 Fmotors(EN_FL, IN1_FL, IN2_FL, EN_FR, IN1_FR, IN2_FR);
L298NX2 Rmotors(EN_RL, IN1_RL, IN2_RL, EN_RR, IN1_RR, IN2_RR);

temp = 23.7; //Temp in C degree
factor = sqrt(1 + temp / 273.15) / 60.368;

unsigned int EN_FL = 2;
unsigned int IN1_FL = 25;

unsigned int IN2_FL = 24;
unsigned int IN1_FR = 27;
unsigned int IN2_FR = 26;

unsigned int EN_FR = 3;

unsigned int EN_RL = 6;

unsigned int IN1_RL = 31;
unsigned int IN2_RL = 33;
unsigned int IN1_RR = 30;

unsigned int IN2_RR = 32;
unsigned int EN_RR = 5;

int speed = 255;

// int directionA = L298N::FORWARD;
int value = 0;

int distancel;

int distanceR;

int distanceFL;

int distanceFR;

// int distance;

unsigned short FLspeed

speed;

unsigned short FRspeed = speed;

unsigned short RLspeed

speed;

unsigned short RRspeed = speed;

Do 39

62 void setup() {

63 Serial.begin(9600);
64 setSpeed();
65
66 previousTimer = millis();
67 }
68
69 void loop() {
70 delay(2000);
74 if (value == 0) {
72 for (int i = 0;i < 12; i++) {
73 dist[i] = (float)sonar[@].ping_median(5) * factor;
74 Serial.println(dist[i]);
75 moveForward();
76 delay(300);
77 moveBackward();
78 delay(80);
79 // Serial.println("move forward");
80 stopMoving();
81 delay(200);
82 }
83 // value = 1;
84 stopMoving();
85 delay(300);
86 for (int i = 0; i < 12; i++) {
87 if (dist[i] < 35) {
88 command = 0;
89 }
90 else {
91 command = 1;
92 }
93 }
94 }
95 value = 1;
96 // stopMoving();
97 // delay(300);
98 // for (int 1 = 0; i < 10; i++) {
99 // if (dist[i] < 35) {
100 // command = 0;
101 // }
102 // else {
103 // command = 1;
104 // }
105 // }
106 if (command == 1) {
107 moveBackward() ;
108 delay(600);
109 moveForward() ;
110 delay(80);
111 stopMoving();
112 delay(200);
113 moveRightSideways();
114 delay(1200);
115 moveLeftSideways();
116 delay(80);
117 stopMoving();
118 // command = 0;
119 }
120 command = 0;
121
122 // movelLeftSideways();

123 1}

125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184

10c

void setSpeed() {

FLspeed = speed;
FRspeed = speed;
RLspeed = speed;
RRspeed = speed;
Fmotors.setSpeedA(FLspeed);
Fmotors.setSpeedB(FRspeed) ;
Rmotors.setSpeedA(RRspeed) ;
Rmotors.setSpeedB(RLspeed) ;

void moveForward() {

}

Fmotors.setSpeedA(255);
Fmotors.setSpeedB(255);
Rmotors.setSpeedA(255);
Rmotors.setSpeedB(255);
Fmotors.backwardA();
Fmotors.backwardB();
Rmotors.forwardA();
Rmotors.backwardB();

void moveBackward() {

}

Fmotors.setSpeedA(255);
Fmotors.setSpeedB(255);
Rmotors.setSpeedA(255);
Rmotors.setSpeedB(255);
Fmotors.forwardA();
Fmotors.forwardB();
Rmotors.backwardA();
Rmotors.forwardB();

void movelLeftSideways() {

}

Fmotors.setSpeedA(255);
Fmotors.setSpeedB(255);
Rmotors.setSpeedA(255);
Rmotors.setSpeedB(255);
Fmotors.forwardA();
Fmotors.backwardB();
Rmotors.forwardB();
Rmotors.forwardA();

void moveRightSideways() {

}

Fmotors.setSpeedA(255);
Fmotors.setSpeedB(255);
Rmotors.setSpeedA(255);
Rmotors.setSpeedB(255);
Fmotors.backwardA();
Fmotors.forwardB();
Rmotors.backwardB();
Rmotors.backwardA();

void rotateLeft() {

Fmotors.setSpeedA(255);
Fmotors.setSpeedB(255);
Rmotors.setSpeedA(255);
Rmotors.setSpeedB(255);
Fmotors.backwardA();
Fmotors.forwardB();
Rmotors.forwardA();
Rmotors.forwardB();

Do 40

185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213

Cal

}

void rotateRight() {

Fmotors.
.setSpeedB(255);
Rmotors.
Rmotors.
Fmotors.
.forwardA();

Fmotors

Fmotors

Rmotors.
Rmotors.

}

setSpeedA(255);

setSpeedA(255);
setSpeedB(255);
backwardB();

backwardA();
backwardB();

void moveRightForward() {

Fmotors.
Rmotors.

}

backwardA();
forwardA();

void moveRightBackward() {

}

void movelLeftForward() {

Fmotors.
Rmotors.

}

backwardB();
backwardB();

void movelLeftBackward() {

}

void stopMoving() {

Fmotors.
Rmotors.

}

stop();
stop();

12. Validating the performance.

C.

culation:

Experimental testing and results and data

The chassis weight = 5609

The motors weight = 218*4 = 872g

Tesla Roadster body weight = 1470g

Total amount of load on the wheels = 560 + 872 + 1470 = 29029

Total wheels weight = (wheel case + 10*roller weight)*4 = (82+10*8)*4 = 648¢

= The expected weight that the wheels can carry: 648*11.5 = 7452¢g

Table of mecanum wheel performance

Do 41

Materials of mecanum wheel

Terrain

TPU case

PLA case

TPU roller

PLA roller

Carpet floor

Flat surface

Do 42

yes yes Not working | Not working

yes yes Not working | Not working
yes yes Not working | Not working
yes yes Working Working

4. Discussion

a. Detail of the build-up of the artifact

Architecture:

1. Processor: Arduino Mega boards, 2 H-bridges

2. Sensor: NRF24L01 Transceiver Module, ultrasonic sensors HC-SR4

3. Motor: 4 DC motors

4. AWD or FWD: AWD

5. Driving transmission: directly from motor shafts

6. Terrain: flat surface, trying to do it on outdoor surfaces
7. Battery: 11.1V, 50C, 5200 mAh, LiPo battery

8. Capacitor: 47~100uF

9. LEDs

b. Equipment used

1. Rotary tools, clamp, vise, screwdrivers, plyers, driller, solder, wire stripper, electronic

tape

2. lpad for sketching ideas.

3. Computer with 3D CAD and 3D print software (SolidWorks, Ultimaker Cura) for

designing and modeling

Do 43

4. 3D printer for printing
5. Voltmeter for checking voltage and current values.
6. Computer with Arduino IDE for programming

c. Setup procedures and final results

I had many troubles with keeping everything together during the setup and assembly. When |
designed the mecanum wheels, it took time to understand the mechanism of how these wheels
work and how they are designed so the roller can touch the ground and roll ideally. When |
created the Tesla Roadster, | had to base it on the online diagram since the vehicle has yet to be
released, and there was no pre-model | could find on a website such as Thingiverse. And the
chassis was also a problem since it is the most important besides the wheels. With a good
chassis, the wheel can run properly. And my chassis did not have any suspension, which, when it
bends inward, will cause the wheels to be lifted from the ground. However, | fixed it by flipping
the DC motor holder upside down and using the Tesla Roadster body weight distribution load to
keep the wheel on the ground. The PLA mecanum wheels were good, but not for an actual
experiment. | tried to make the roller from TPU material, which is soft like rubber, to get more
friction. Still, it did not work since the roller was initially distorted, causing it to fail to run from
the beginning and making the whole wheel unable even to rotate. Therefore, | had to switch to
actual mecanum wheels. This showed how precisely the manufacturing process needs to be for
this specific type of wheel.

At the beginning of this project, | planned to use stepper motors. They worked but were too slow
and noisy. My stepper motor drivers keep heating up and draw too much power and heat my
Arduino board. Therefore, | had to switch to DC motors with two H-bridge. The wheel could

handle about 30009 of load for the electrical side. However, it was with the 11.1V battery, while

Do 44

the H-bridge can handle up to 36V, and | believe 24V is enough to handle 7500g as expected.
The reason that I could not experiment with the 24V battery was that the limit voltage of my DC
motors was 12V. The wheel could go at a high enough speed with the remote control. The rate of
the wheels depends on how much PWM we give to it and the voltage applied. However, if we
want to implement autonomous functions, the wheel should go reasonably fast to sense the
environment and keep everything safe.

The wheel can do object avoidance and self-parking features. If I have more time to learn and
use more powerful resources such as Nucleo board and Raspberry Pi, I can make it follow the
lead, stay in lane, and do lane changing.

However, there are many drawbacks to this type of wheel. The sideways movement is not
practical for cars and trucks, which mostly move forward. | used the sideways movement
sparingly for my project, even for object avoidance. The only time this sideways movement is
helpful is doing parallel parking; anything else would cause an accident in real life.

The mecanum wheel durability is much lower than the conventional wheels, especially at high
speed, which means higher maintenance costs and will only be suitable for highway performance
if we have better material for roller manufacture. The mecanum wheel also has much inertia in
movement; without a standardized manufacturing process, it may not meet the standard quality
for daily use and cause many more problems with actuation.

Moreover, the mecanum wheel performance is not good on other terrains besides the smooth
concrete ground. The lack of friction makes ensuring that every roller touches the land more
challenging. And working with the mecanum wheel also means losing half of the power from

each wheel when moving since they cancel half of each in other directions.

Do 45

Figure 32-33. Self-parking in parallel

Do 46

5. Conclusions

In conclusion, my project did not yield the best result because of the lack of suitable materials
and a proper manufacturing process. However, it proved that developing smart cars from electric
cars is possible, and we can even create a network to connect smart cars when the algorithms are
completed. Still, the algorithm should be developed based on the conventional wheels and their
work mechanism since it is standardized and optimized for daily use. The mecanum wheels are
suitable for omnidirectional functions, but their disadvantages outweigh the advantages unless

we can optimize the mecanum wheels better.

Do 47

6. References
“Arduino Mecanum Wheel Robot.” Youtube, uploaded by How To Mechatronics, May 28™",

2019, https://www.youtube.com/watch?v=83tVkgT89dM &list=WL &index=1.

“Mecanum Wheel.” Wikipedia, Wikimedia Foundation, 14 Nov. 2021,

https://en.wikipedia.org/wiki/Mecanum_wheel.

https://www.sciencedirect.com/science/article/pii/S0957415820301318

“Tutorial Mecanum Wheel SolidWorks PFA ULT 2020-2021” Youtube, uploaded by Maher

Bahri, Jan 14", 2021, https://www.youtube.com/watch?v=036jcFvxf88

https://www.youtube.com/watch?v=83tVkgT89dM&list=WL&index=1
https://www.sciencedirect.com/science/article/pii/S0957415820301318

